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u_    On Nonlinear Elliptic Partial Differential 
Equations and Holder Continuity 

By LOUIS NIRENBERG 

1. Introduction 

1. This paper is concerned with genera! nonlinear elliptic partial differential 
equations of second order for functions of two independent variables. New a 
priori estimates for the derivatives of solutions of such equations are derived 
and used to obtain various results. In particular, a proof is given for the exist- 
ence of solutions of the boundary value problem for quasilinear elliptic equations 
in convex domains. 

The basic device used in deriving the a priori estimates is a lemma (Lemma 
2 of Section 3) expressing a relation between the distortion of a class of mappings 
of a domain in the plane—this class includes the quasi-conformal mappings— 
and the Holder continuity' of the mappings in that class. The techniques used 
here are closely related to those of C. B. Money in [13] and in his work on multiple 
integral variations! problems in the Calculus of Variations [14]. In addition, 
extensive use is made of the theory of linear elliptic partial differentia) equation* 
as developed by J. Schauder in [19]. 

Some of the theorems proved here have been extended to elliptic equations 
in more than two independent variables; this extension will be presented in a 
forthcoming paper. 

We proceed to describe our main results. 

2. One of the aims of this paper is to derive a priori estimates for the 
derivatives of solutions z(z,y) of a genera! nonliear elliptic equation 

(1.1) F(x,ys,p,q,rs,t) - 0,       4FJ?, - F*. > 0. 

Here p, • • • , I represent the partial derivatives of z, p •» z, ,•••,< — z„ , and 
F, — dF/dr etc. The principal theorem to be proved in this connection, from 
which the others follow by use of known theorems for linear elliptic equations, is 

*A function / defined in » set Ls said to satisfy a Haider condition, or inequality, in that 
set if there exist two positive constants C, a (a < 1) such that for any two points P, P" of the 
set the inequality | /(/>) - f(P') | £ CPP" holds, where PP denotes the distance between P 
and P'. The constants C and o are called the coefficient and exponent, or simply the constants, 
of the Holder condition. A function satisfying a Holder condition is sometimes said to be 
Holder continuous, its Holder continuity being described by the Holder inequality. 
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Theorem I: Let z(x,y) be a function defined in a domain* ID in the i,j/-plane 
satisfying there the elliptic partial differential equation (1.1). 

Assume: (i) F has continuous first derivatives with respect to its eight 
arguments {x,y,t,p,^,r,s,t) in an open set of the eight dimensional space contain- 
ing the hypersurface (x,y,z(x,y), • • • Mx,y)) given by the solution z{x,y). The 
first partial derivatives of F on this hypersurface are bounded in absolute value 
by a constant K. 

(ii)   t(x,y) has continuous first and second derivatives in 3D which arc 
bounded in absolute value by a constant Kt . 

(iii)   For any real numbers £,n the inequality 

(1.2) F^ + ?& + F,,' > Hf + ,*) 

holds for all x,y in 3D, where X is a positive constant. 

Conclusion: In any closed subdomain (B, of 3D, the second derivatives of 
z(x,y) satisfy a Holder condition whose coefficient and exponent depend only on 
K, Kt , X, and the distance from the closed subdomain (B to the boundary of 3D*. 

Additional a priori estimates for all derivatives of a solution of (1.1) in 
terms of bounds of its derivatives of first and second order are derived, using 
Theorem I, in $9. These estimates include those obtained by S. Bernstein [2] 
and J. Schauder ([18], Sections 4,6) for solutions of equations of the form (1.1). 
Our derivation of the estimates from Theorem I uses results concerning just 
linear elliptic equations—whereas their derivation involves the 'auxiliary func- 
tion' of Bernstein. (Further references and remarks concerning the derivation 
of a priori estimates for derivatives of solutions of (1.1) are given in §9, 1.) 

Theorem I was developed principally in order to establish existence theorems 
for nonlinear elliptic equations; it has been applied to solve the Weyl and Min- 
kowski problems in differential geometry in the large. (The solutions of these 
problems will appear in a forthcoming issue.) The strength of the theorem lies 
in the nature of the H6lder condition arising in its conclusion. As an illustra- 
tion of the manner in which it is used we deduce the following theorem con- 
cerning compactness of solutions of nonlinear elliptic equations. 

Theorem II. Let zm(x,y), n — 1, 2, • • • , be a sequence of functions defined 
in a bounded domain 3D in the z,y-plane, satisfying elliptic partial differential 

The term domain is always used to denote an open point set. The term closed domain 
denotes the closure of a domain. A point set is said to be a closed subdomain of a domain Q, 
if it is a closed domain and is contained in (2. 

This result has also been extended to the general second order elliptic equation of the 
type (1.1) with any number of independent variables, but the final result for this general cam 
is not as strong as Theorem I, for, the coefficient of the derived Holder inequality depends—i.. 
addition to the bounds for the second derivatives of the solution—on the modulus of continuity 
of the second derivatives. 
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equations 

F.(.T, y, 2. , p., 9., r. , *., tn) = 0 

in 'JD. 

Assume: There exist positive constants K, Kt , X, independent of n, such 
that z, and Fn satisfy the conditions (i), (ii) and (iii) of Theorem I with respect 
to these constants. Assume further that the z. are uniformly bounded in absolute 
value in 2D. 

Conclusion: Then* exists a subsequence of the z, which converges in 2D to 
a function z(j,y) having continuous first and second derivatives; these are the 
limits of the corresponding derivatives of the members of the subsequence. 
Furthermore, if the functions Fn converge to a function F then the limit function 
z is a solution of the limit differential equation 

F(x, y. z, z, ,z, , z„ , z„ , z„) = 0. 

Proof: From Theorem I it follows that the second derivatives of the z, 
satisfy a uniform Holder condition (independent of n) in any closed subdomain 
of 2D. They are therefore equicontinuous in this subdomain. Because of the 
uniform boundedness of the z. and their first and second derivatives it follows 
that we may select a subsequence z„, , of the z,, such that the zHI and their first 
and second derivatives converge in this subdomain. Since this is true for every 
closed subdomain cf £> we can—by choosing a suitable sequence of closed sub- 
domains and by the usual diagonalization process—find the subsequence of 
the z. which will converge (together with first and second derivatives) to a func- 
tion z (and its corresponding derivatives) in all of 3D. The convergence is uniform 
in any closed subdomain.  Th»- last, statement- of Theorem II follows immediately. 

3. Theorem I is more than a theorem on a priori bounds of solutions of 
elliptic equations. The Holder continuity of the second derivatives of the solu- 
tion z(x,y) of (1.1) is not assumed-, it is derived as a consequence of the other 
assumptions. For this reason the theorem is also of interest :n connection with 
the question of analyticity of solutions of elliptic partial differential equations. 
With its aid one m>».y weaken the conditions under which the analyticity of a 
solution of (1.1) may be inferred when F is analytic in its arguments. 

The fundamental question concerning the differentiability and analyticity 
of solutions of analytic elliptic partial differential equations has received con- 
siderable attention since the classical work of S. Bernstein [1]—the general 
elliptic system of equations, with any number of both dependent and independent 
variables was finally treated by I. G. Petrovsky (15). He proved the analyticity 
of sufficiently often differentiable solutions of such analytic systems. 

However, in all the proofs of the analyticity of solutions it is not sufficient 
to assume that the solutions have continuous derivatives up to the orders that 
occur in the equations.   Usually further differentiability conditions are required. 
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Bernstein's proof [1J of the analyticity of a solution z(x,y) of the general second 
order elliptic equation (1.1), where F is analytic in all its arguments, makes use 
of the assumption that z has continuous third derivatives. Later this result was 
obtained by M. Gevrey [31, (see [12], pages 1320-1324, for further references), 
and again by H. Lewy [10] who extended the solution z and the equation (1.1) 
to complex values of the arguments x,y. Other proofs of the analyticity of any 
solution z of a nonlinear elliptic equation of second order with any number of 
independent variables were given by G. Giraud [4] and E. Hopf [5), under the 
weaker assumption that z has continuous first and second derivatives and that 
the second derivatives satisfy HSlder conditions. They also proved ([51, Theo- 
rems IV and V, pages 211-215). under the same sssumption on z, that if th* 
function F has partial deriviatives with respect to all of its arguments up to 
order m which satisfy HSlder conditions, then the solution z of (1.1) possesses 
derivatives up to order m+2 satisfying Holder conditions. The question— 
whether the continuity alone of the first and second derivatives of z implies 
that z is analytic (when F is)—has remained open. 

Theorem I settles this question and together with the results of Giraud and 
Hopf implies 

Theorem III:* Let z(x,y) have continuous first and second derivatives 
and satisfy an elliptic partial differential equation 

F(x, y, x, y, q, e, 8, t) - 0 

in a domain in the x,i/-plane.   Then 
(a) if F is an analytic function of its eight arguments then z(x,y) is an 

analytic function; 

(b) if F has continuous partial derivatives with respect to its eight argu- 
ments up to order m which satisfy Holder conditions (in these arguments), then 
z possesses continuous partial derivatives up to order m + 2 satisfying HSlder 
conditions. 

4. The proof ol Theorem I is based on a result of C. B. Morrey concerning 
linear elliptic equations (.see Lemma 1 of Section 6, [13]). We give a new and 
nor*} direct proof of this important result by a method which has the further 
advantage of admitting a generalization to more independent variables. The 
result is 

Theorem IV: Let z(x,y) be defined in a domain G in the x,y-plane and 
eatisf} the elliptic partial differential equation 

(13) Az„ + Bz„ + Cz„ + D - 0. 

Assume: (i) The coefficients A, B,C and D are functions of (x,y) bounded 
in absolute value by a constant K. 

'Because of the result mentioned in footnote 3 this theorem may be extended to solutions 
of BS'C'IK' order nonlinear elliptic equations in any number of independent variables. 
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(ii) z[x,y) has continuous first and second derivatives in Ct and the first 
derivatives are bounded in absolute value by a constant K, . 

(iii) For any real numbers (,»> the inequality 

(1.4) At + Biv + Cr,'>H? + v
7) 

holds for all (x,y) in G; here X is a positive constant. 

Conclusion: In any closed subdomain <S>, of G, the first derivatives of z(x,y) 
satisfy r. Holder inequality with constants depending only on K, /C, , \, and the 
distance from the closed subdomain (B to the boundary of G*. 

Theorem IV yields an estimate foi the Holder continuity of the first de- 
rivatives of z, using, essentially, only the boundedness of the coefficients A, 
B, C, D. E. Hopf ([15], Theorem I, page 208) has shown that if the coefficients 
considered as functions of (x,y) satisfy a Holder condition, then Holder inequali- 
ties for the second derivatives of z in any closed subdomain may also be derived. 

Since so little is assumed about the coefficients A, B, C and D—just that 
they are bounded and satisfy (1.4)—Theorem IV is useful in studying nonlinear 
elliptic equations. For example, the coefficients A, B, C, D may already involve 
z(x,y) and derivatives of z{x,y) of any order, so that (1.3) may be nonlinear. 
In fact, Theorem IV is employed in §8 to derive an existence theorem for quasi- 
linear elliptic equations. There we prove the existence of a solution z(x,y) of 
the boundary value problem for the general quasilinear elliptic equation of the 
form 

(1.5) A{x, y, z, zm, z,)z„ + B(x, y, z, zM , z,)z„ + C(x, y, z, z., z,)z„ = 0 

in a convex domain in the plane. 
Such an existence theorem was obtained by J. Leray and J. Schauder [9] 

as an application of their concept of degree of mapping in Banach space. 
In order to solve the boundary value problem for equation (1.5) one must 

derive a priori estimates for its solutions. The interesting feature of our proof 
of the existence of a solution is that, in obtaining a priori estimates, we use only 
results concerning linear elliptic equations. This avoids the involved procedure 
(due to Bernstein) used by Schauder to obtain a priori estimates for second 
derivatives of a solution. (See [18], Section 4, where reference is made to pages 
119-125 of 12].) In addition, the nature of the a priori bounds obtained here is 
such that the notion of degree of a mapping in Banach space is not needed. 
Instead we use a fixed point theorem concerning transformations in Banach 
space due to Schauder [17]. Finally, we remark that the existence theorem in 
[9] assumes more of the differential equation than our theorem in $8. 

Morrey [13] observed that Theorem IV could be used to show the existence 
of a solution of (1.5) but his proof contains a gap. Further remarks about the 
work of Leray and Schauder, and Morrey, are made in the Outline of $8, 1. 

Our existence proof makes use of Scl auder's work [19] on linear second 

•See the end of §4 for mare general conditions under which the conclusion still holds. 
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order elliptic equations. In order to be able to use his existence theorems con- 
cerning such equations we derive in §6 a sharp form of Theorem IV which is 
expressed as Theorem V, and which is of some interest in itself (see remarks in 
§6, 1). Theorem V contains extra conditions impeded on the solution z(x,y) of 
(1.3) enabling one to calculate a Holder inequality for the first derivatives of z 
in the whole domain (2. These extra conditions are of the nature of assumptions 
about the boundary of Q. and the boundary values of z{x,y). 

5. The pr<x)fs of the results described above are presented in §4, 5,8 and 9— 
the remaining sections contain subsidiary lemmas which are employed in the 
proofs. At the end of some sections remarks are inserted which show how the 
principal results of the section may be strengthened. These remarks are not 
used in our discussion of partial differential equations. 

Theorem IV is derived as a simple consequence of a fundamental lemma, 
Lemma 2 of §3, which concerns the Holder continuity of a class of mappings 
(including quasi-eonformal mappings). This lemma and a few related lemmas 
concerning these mappings are proved in §3 with the aid of another lemma 
(suggested by K. O. Friedrichs), Lemma 1, of §2, 1. The proof of Theorem IV, 
using Lemma 2, is then given in §4. The techniques used in these sections, §2-4, 
are modifications of those developed by Morrey in his work on multiple integral 
variational problems (14], and are, together with the proof of Theorem I related 
to those employed by M. Shiffman in his proof of the analyticity of solutions of 
multiple integral variational problems (20). The proof of Theorem I is given in 
§5 and consists in transforming equation (1.1) into equations similar to (1.3) 
for the difference quotients of the solution of (1.1). Thus, for the proofs of 
Theorem IV (and I) it is sufficient to read §2, i, §3, §4 (and §5), which are in- 
dependent of the rest of the paper. 

In §6 we prove Theorem V, the sharp form of Theorem IV, using (i) a 
modification, Lemma 3', of one of the lemmas on quasi-conformal mappings, 
which in turn is proved in §7, and (ii) a sharp form of Lemma 1, Lemma 1', 
which is proved in §2, 3. 

Section 8 treats the quasilinear elliptic equation (1.5). Using Theorem V, 
and Schauder's theory of linear elliptic equations [19], we prove there the exist- 
ence of a solution of the boundary value problem in Theorem VI and derive a 
priori estimates for all solutions. At the end of §8, in No. 8, we show how the 
existence of a solution of the problem may be derived using Theorem IV instead 
of Theorem V. This requires a slight modification of an existence theorem for 
linear elliptic equations, due to Schauder. This whole section is completely 
independent of the rest of the paper except for reference to Theorems IV and V. 

Finally in 59 we derive a priori estimates for derivatives of order greater than 
two of a solution of (1.1) in a domain 3D in terms of bounds for the derivatives 
of first and second order. The estimates for the derivatives (of high »r order) in 
closed subdumains of 3D follow from Theorem I with the aid of th • theory of 
linear elliptic equations in [19].   In order to obtain such estimates ir the whole 
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domain 3D we derive first a sharp form of Theorem I, Theorem VII. This con- 
sists in imposing conditions on the boundary of 3D and on the boundary values 
of the solution z, which make it possible to conclude that the second derivatives 
of z satisfy a Holder inequality in all of 2D. 

2. A Lemma 

1. Domains. A large part of this paper will deal with the derivation of 
estimates for solutions of elliptic differential equations defined in domains £> 
in the x,y-plane. The estimates to be obtained are of two kinds: estimates of 
values of solutions in closed subdomains of 3D and estimates of values in the whole 
domain 3D. The domains of definition 3D of functions for which estimates of the 
first kind will be derived may be arbitrary open sets .'n the plane, which we 
sometimes assume to be bounded. Estimates of the second kind, however, will 
be derived only for functions in domains satisfying the following condition: 
3D is bounded by a finite number of simple closed curves which do not intersect; 
each curve has a finite length and may be represented by functions z(«), y(s) of 
arc length «, having continuous derivatives up to order m (an integer). 

Definition:   Domains having this property '•re w»: -! to be of type Lm . 
It is clear that the boundary curves of a f .1 ... of 4ype L, have bounded 

curvature.   In addition, in a neighborhood of.. .at on such a curve one of 
the coordinates, say x, ma> be introduced <*s >cal parameter, so that the 
curve may be represented (locally) by the equation y ** fix), where f(x) is 
twice continuously dulerentiable. 

2. Many of the estimates that will concern us are of the nature of Holder 
inequalities (see footnote 1, page 103) for functions, as in Theorem IV; to derive 
such estimates for .<» function we need a means of estimating the difference of 
the values 01 the function at any two points in terms of the distance between the 
points. The technique we will employ is to establish estimates for certain 
double integrals involving the derivatives of the function, and then to derive 
from these estimates the required Holder inequality for the function. 

Of course the estimates of the double integrals must be of such a kind as to 
imply a Holder inequality for the function. It is well known that having a 
bound for the Dirichlet integral of a function does not enable one to estimate the 
difference of the values of the function at two points; something stronger is 
needed. There are some integrals, involving the first derivatives of a function 
which, together with appropriate estimates, have the required nature. In 
terms of these estimates the calculation of the constants of the Holder inequalities 
is in general not difficult. The difficulty which occurs in practice, in trying to 
employ one 'of these integrals in order to derive a Holder inequality for a func- 
tion, arises in the attempt to establish the appropriate estimates for the integral. 

In his work on multiple integral variational problems C. B. Morrey derived 
Holder inequalities i'or functions by establishing estimates of the "growth" of the 
Dirichlet integrals of ihe functions over circles—as a function of the radius. 
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The fact that such growth estimates imply Holder inequalities was shown by 
Morrey in a lemma stating (essentially) that if the Diricblet integral of a func- 
tion over every circle is bounded by Kr°, where K and a < 1 are positive con- 
stants and r is the radius of the circle (this describes the growth), then the 
function satisfies a Holder inequality with constants depending on K and a 
(see [14), Theorem (2.1) of Chapter 2). 

The original proof of Theorem IV of §1 devised by the author was more 
closely related to Morrey's proof than that to be presented here. There, as 
with Morrey, the Holder inequalities for the derivatives p,q of the solution t 
of (1.3) were obtained by the derivation of estimates of the "growths" of the 
Dirichlet integrals of p and q (in a manner more Hirect than Morrey's) and by 
use of Morrey's lemma. Later K. O. Fnedrichs observed that appropriate 
estimates for another integral, which wouid imply Holder continuity for p and q, 
could be obtained somewhat more simply; we shall follow hit. procedure here. 

The integral to be used is expressed in (2.1), and we prove the analogue of 
Morrey's lemma, i.e. that estimates for the integral yield Holder continuity, in 
the following lemma. It is expressed in a form suited for application in §3 where 
we shall derive Holder inequalities for (classes of) functions in closed subdomains 
of the domain of definition. In No. 3 of this section the lemma is stated in a 
sharp form suited for application in §6 where Holder inequalities for functions 
in the whole domain of definition are derived. 

Lemma 1: Let p(x,y) be a function having continuous first derivatives 
defined in a domain Gt in the x,f-plane. Let (B be a closed subdomain of Q. and 
denote its distance from the boundary of a by 2d. Assume that p(x,y) is bounded 
in absolute value by a positive constant K, in (B, and that there exist positive 
constants M, a, a < 1, such that for any circle C4 with center in (3 and radius 
d the following inequality holds 

(2.1) // r-(pl + pi) dA < M. 

Here dA represents the element of area in the circle C4 and r the distance of the 
point of integration from the center of the circle. Then the function p(x,y) 
satisfies a Holder condition m fc with exponent a/2 and coefficient depending 
only on Kx , M, a and d. 

The proof of the lemma is not difficult but we present all details so that 
they may be referred to in the proof of the sharp form in No. 3. 

Proof: We wish to show that there exists a constant H depending only 
on K x , M, a and d such that for any tvo points P and P' of <B the inequality 

1 p(P) - p(P') | < u 

holds, where PP' is the distance between P and P'.   Clearly if the distance 
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Pr   between two points P and P' of (B is not less than d then, since 
I P(*,V) \£Kt, 

| p(P)_- p(P') 1 <2K1 

PP"n ~ dm/t ' 

We need, therefore, consider only the case where the distance PP1 — 8 between 
two points P and P' of (B is less than d. 

For any point (x,y) in Q 

| p(P) - p(P') i < | p(P) - p(x,y) | + ! p(x,y) - pin |. 

Letting the point (x,y) range over the circle with the line joining P to P' as 
dianeter, we integrate both sides of the inequality with respect io (x.y) over 
this circle (of diameter «) to obtain the inequality 

Y I PCP) - Pd") I 

(2.2) 

< Jf \p(P) - P(z,v) \dxdy + Jf \p(x,y) - p(P') \dxdy. 

The first term on the right is certainly not decreased if we enlarge the domain 
of integration to a circle C, with center P and radius «. Since » < d, C\ lies in 
a. Introducing polar coordinates (r,0) in this circle, and denoting by v'r,6) 
the value of p at (r,0), we note— since p(r,$) — p(P) = f'oP,(j>,P) dp —that vhe 
first term is not greater than 

r. = //[f |p,(,,*)|dp]rdrd*. 
c. 

We now proceed to obtain appropriate estimates for /,.   Integrating by 
parts with respect to r, the integral /, may be written in the form 

It=\f9fJ <?-r*)\p,\drd9. 
Hence 

/, < \ >» f f' | Pr \ dr dO = \ *' // I | p. | dA 
c. 

where dA = rdr dS, 

= |.,//r-'-|p. \r~"dA 

s,Alir"'<iA]VJr">UAY- 
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by Schwarz's inequality, 

c, 

finally, by (2.1), since the last integral is not decreased if the integration is ex- 
tended over a circle concentric with C, and radius d 

(2.3) /, <^» 

The same estimate may be obtained for the second term on the right side 
of (2.2).   Therefore (2.2) yields the inequality 

4 

or 

^ \ p(P) - p(P') \ < yj^-»'+'" 

i v<p) - pin i <4 w 
pJPm/t —    \ TO 

since PP  = a.   The right side is clearly a constant depending cnly on M and a, 
and the proof of the lemma is complete. 

Remark: Clearly it is not necessary to assume that the first derivatives of 
p are continuous; one need merely assume that the integrals occurring in (2.1) 
exist and satisfy (2.1). This follows from the fact that we may approximate 
p(x,y) by functions p. with continuous first derivatives, establish the Holder 
condition for these functions, as above, and then let n —»» to obtain the re- 
quired Holder condition for p{x,y)—after some slight argument. 

In addition, if the domain Q and the set (B are bounded connected sets, 
it may be shown that the coefficient in the Holder condition of p(x,y) depends 
only on M, a, d, and the diameter of Ct, and is thus independent of K, . 

3.   The following is a sharp form of Lemma 1 to be used in §(*>: 

Lemma V: Let p(x,y) be a function having continuous first derivatives 
defined in a domain Ct of type Lt (see No. 1). Assume that | p(x,y) \ < Kx and 
assume that there exist positive constants d, M, a, a < 1, such that for any 
circle with center in Q and radius d the following inequality holdR: 

(2.4) fj r-(pl + pj) dA < M. 

Here the integration is extended over the intersection C4 of Ct with the circle; 
dA represents element of area and r the distance of the point of integration 
from the center of the circle. 
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Then the function p{x,y) satisfies a Hdlder condition in a with exponent 
a/2 and a coefficient that depends only on K\ , M, a, d, and the domain Gt. 

Proof: The proof is similar to that of I^emma 1 in No. 2, and in order to 
make use of the calculations performed there, we adopt the following, seemingly 
artificial, procedure. 

Let P be any point of G. Consider a domain in the shape of a quarter circle 
with P at the vertex, that is, a domain bounded by a circular arc with P as 
center, and by two mutually perpendicular radii from P. If the length of the 
radius of the circle is 8 we call such a domain i}(P,s). From the fact that the 
boundary cinves of Ct have no corners it follows that for any point P of a one 
can find such a domain fi(P,«) which lies entirely in 0, at least for s sufficiently 
small*.   Clearly for any point P and radius 8 there may exist many such domains. 

From the fac* that G is of type Lt (in particular, since the curvatures of the 
boundary curves are bounded) it follows that there exists a positive number d', 
which we can assume to be less than d, such that for any two points P and P' of 
a whose distance from each other, which we denote by a, is less than d', there 
exist two such domains Q(P,«), Q(P',<<) lying entirely in a with the property that 
the area of their intersection (which may be greater than *'/2) is not less than 
•74. 

We use domains U(P,s) because the calculations performed on pages 111 and 
112 for integrals in circles C. may be carried over for integrals in these domains. 

We now proceed to establish the Holder condition for p. We must show 
that there exists a constant H depending only on K, , M, a, d, and the domain 
a, such that for any two points P and P" of a the inequality 

i p(P) - pin i 

holds.   Clearly if the distance Pr  > d' then, since \p\ < K, , 

I pjp) - pin I < 2K± 

Therefore we need only consider the case Pr  — 8 < d'. 
Let (x,y) be any point of a, then 

| p{P) - piP') I < I P(P) - Pix,y) I + I Pix,y) - piP') |. 

Introduce the domains Q(P,«), Q(P',*) defined above and integrate with respect 
to the point (x,y) over their intersection.   The inequality thus obtained is 

A | p{P) - PiP') I < // i PiP) - Pix,v) i dx dy 

+ // \pi*,V)-pin \dxdy, 

•Since the boundary curves have no comers we may use—instead of a quarter circle—any 
fraction of a circle less than \, i.e. any fraction bounded by two radii meeting at an angle less 
than w. If the boundary had corners we could use any angle less than the smallest corner angle; 
thus the lemma may clearly be generalised to hold for a wider class of domains. 
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where A is the area of this intersection.   Since A is not less than «a/4 we have 

£ | p{P) - p(P') I < // I P(P) - P(x,y) \dxdy 

+ // I P(x,y) - p(P') | dx dy. 

The first term on the right is certainly not decreased if we extend the domain of 
integration to all of fl(P,«). Introducing polar coordinates (r.0) about P we see 
that this first integral is not greater than 

/. =   Jf  [(   !7>,(P,0) \dpjrdrd6. 

Following the procedure of No. 2 we obtain the same estimate (2.3) derived 
there (for, the calculations performed there may be carried over to integration 
in fl(P,«)), 

The same estimate may be obtained for the second term on the right of the 
inequality above.   This inequality yields, therefore, 

^\p(P)-p(P')\<^J^ ***'•'* 

or 

since Pr   • *.   The right side is clearly a constant depending only on M and 
a; the lemma is proved. 

Remarks analogous to those at the end of No. 2 apply also to Lemma 1'. 
If the domain Ct is connected and bounded it may be shown that the coefficient 
in the Holder inequality satisfied by p depends only on d, M, a, and the domain 
Ct, and is thus independent of Kx . 

3. Holder Continuity of Quasuconfornud and Other Mappings 

1. Functions p{x,y) and q(x,y), defined in a domain in the z,j/-plane, define 
a mapping of the domain into the p,?-plane. If p and q are differentiable, the 
mapping behaves like an affine transformation in the neighborhood of a point, 
and takes circles either into ellipses or into line segments. In the former case the 
ratio of the major to the minor axis of the ellipse is called the "eccentricity" of 
the mapping at the point. If the eccentricity of the mapping at every point is 
uniformly bounded the mapping is said to be of "bounded eccentricity." For a 
mapping p(x,y) q(x,y) which changes the orientation the property of bounded 
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eccentricity may be expressed analytically by the assertion that there exists a 
non-negative constant k such that the derivatives of p and q satisfy everywhere 
the inequality 

(3.1) pi + pi + ql + ql   ' k(p,q. - p.qj. 

Mappings p(x,y), q(x,y) satisfying (3 ) for some constant k are also called 
"quasi-conformal." They have many properties similar to conformal mappings; 
for instance a maximum principle holds for each of the functions p, q; i.e., each 
function assumes its maximum and minimum on the boundary of the domain. 
Note in particular from the following form of (3.1) 

(r. + | «.)' + (p. - I *)' + (i - ~)(9l + tf> < o, 

that if k < 2 the functions p, q are constant, and if k = 2 the functions q, p 
satisfy the Cauchy-Riemann equations, i.e., the mapping is conformal. There- 
fore, the only values of k that are of interest are k > 2. 

In this section we shall consider a class of mappings somewhat more general 
in character, namely those satisfying an inequality 

(3.2) p)  hpl + ql + ql< k(p.q, - p.qj + kt 

where k and kx are non-negative constants. We shall prove that for all mappings 
in this class the functions p(x,y) and q(x,y) satisfy a Holder inequality with 
constants depending on k and fc, . This implies, for kx — 0, that all functions 
'p, q defining quasi-conformal mappings with uniformly bounded eccentricity 
satisfy a uniform Holder condition. Such a Holder inequality for quasi-con- 
formal mappings was derived by Morrey [13] (Theorems 1 and 2 of Section 2) 
for one-to-one mappings.   Our mappings need not be one-to-one. 

In order to obtain a Holder condition for p and q with constants in terms 
of k and kx it is easily seen, as above, that the only values of k that are of interest 
are k > 2.   The object of this section is to prove the following 

Lemma 2: Let p(x,y), q(x,y) be functions defined in a domain tit in the 
x,y-plane, bounded in absolute value by u constant K{ with continuous first 
derivatives satisfying the inequality 

(3.2) p\ + pi + ql + ql < k(p.q, - p.q.) + kt 

in Q, where k and kx are non-negative constants. In any closed subdomain (B 
of Ct, the functions p and q satisfy a Holder inequality with constants depending 
only on k, k,, Kk, and the distance from the closed subdomain (B to the boundary 
of a. 

Before proving the lemma it is of interest to consider some mappings for 
which Holder inequalities may be established in all of d. Such cases occur when 
something is known concerning the values of the mapping functions on the 
boundary; one particular illustration of this is given by Lemma 4 of §6, 1. Other 
cases of interest are those where p and q admit extension to a larger domain 2D 
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containing the closure Q. of (2 in which (3.2) is satisfied (with possibly different 
constants k and kx depending on the original constants). Lemma 2 applied in 3D 
then yields a H&lder inequality for p and q in the closed subuomain <2 of 3D. 
Extensions of this kind are possible, say by reflection, if something is known of 
the nature of the boundary of Q. and of its image. To illustrate this remark we 
prove the following lemma, which will not l)e referred to in our discussion of 
differential equations. 

Lemma 2': Assume that p{x,y), q{x,y) satisfiy (3.2) and map, continuously, 
a closed domain Q bounded by a finite number of disjoint circles into a bounded 
multiply •o;:nfcted closed domain tt' Living the same property; assume also that 
each boundary circle is mapped into a boundary circle of Ct'.7 Then y and g 
satisfy a Holderjnequality in Q with constants depending only on k, kt , and the 
closed domains Q, a'. 

Note that 'he mapping is not assumed to be one-to-one or onto the whole 
of a'. 

The mapping considered in the lemma is not as special as it appears; for, 
by transformations of the variables x, y and the variables p, q many mappings 
x, y —» p(x,y), q(x,y) may be reduced to this case. Under such transformations 
of the variables x, y or the variables p, q, inequality (3.2) is transformed into a 
similar inequality for the new variables, with new constants k, fc, depending on 
the stretching factor introduced by the transformation. In case of a conformal 
transformation of either (x,y) or (p,q) variables the constant k is unchanged. 

The proof of Lemma 2' follows from I^emma 2, as indicated, by extension of 
the mapping functions to a larger domain 3D by means of reflections on the 
boundary circles of Q and Q,'. Before defining this extension however we first 
map the p,g-plane one-to-one and conformably onto the p',q'-p\&ne by means of a 
bilinear transformation in such a way that Q' is mapped onto a closed domain a" 
also bounded by circles, and the outer boundary circle of Q." has unit ^dius, is 
concentric with T (one of the inner boundary circles) and has the ojigin asj-^nter. 
Combining the mappings we have a mapping p'(x,y), q'(x,y) of a into a". In 
Ct, p' and q' satisfy an inequality of the form (3.2) with a different constant fc, 
which is easily calculated (it depends on the original k, and on the closed domain 
a', while k remains invariant under conformal change of variables). _ 

In order to derive a Haider inequality for the functions p, q in Q. it suffices 
to derive such an inequality for p', q'. We derive thiH by extending the mapping 
functions p', q' to a larger domain 3D by means of reflections in the boundary circles 
of a and a". In 3D, p' and q' satisfy an inequality of the form (3.2) with again a dif- 
ferent constant kx {k remaining invariant). Furthermore, in 3D, p' and q' are 
bounded by the inverse of the radius of the circle I\ Application of Lemma 2 in 
3D now yields the desired Hdlder inequality for p\ q1 in the closed subdomain Q.. 

'Nothing else is assumed (in particular about regularity) of the mapping of the boundary. 
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Clearly if a' is simply connected, i.e., bounded by one circle, the proof cannot 
be carried out (for, on reflection, p* + q2 may become infinite); in fact in this case 
the assertion of Lemma 2' need not be true, as a simple counterexample shows: 
The functions qn + ip„ = (x + iy)m, »* = 1,2 • • • map (even conformally) the 
unit circle xi + y2 < 1 onto itself with boundary onto boundary, but do not 
satisfy a uniform Holder condition in the circle. 

L. Ahlfors and M. Lavrentiev' have derived a Holder inequality for one-to- 
one quasi-conformal mappings (satisfying (3.1)) of the unit circle onto itself 
which preserve the origin and map boundary onto boundary. The constants of 
the inequality depend only on k. This result can be derived as a simple ?onse- 
quence of Morrey's theorem for onivto-oi.e quasi-copformal mappings and we 
present a proof using Lemma 2.   We formulate the result as 

Lemma 2": Let p(x,y), q(x,y) define a one-to-one quasi-oonformal mapping 
(satisfying (3.1)) of the circle x3 + y2 < 1 onto the circle p1 + q2 < 1 such that 
th3 origin is mapped onto the origin and boundary onto boundary. Then p and q 
satisfy in the unit circle a Holder inequality with constants depending only on k. 

As in the proof of I/emma 2' the proof involves the extension of the definition 
of p, q to a slightly larger circle 3D of radius 1/p by reflection of a ring R, 
p2 < x2 -f y2 < 1, in the boundary circle whereupon Lemma 2 may be applied 
in 2D. In order to apply Lemma 2 a bound for p and q in !D is needed. We must 
first show that the points (p(x,y), q(x,y)) for (x,y) in R are bounded away from 
the origin. By the one-to-one property of the mapping its inverse x(p,q), y(p,q) 
exists and is also quasi-conformal; in fact, it satisfies an inequality of the form 
(3.1) in the circle p2 + q2 < 1 with the same constant k. We may apply Lemma 
2 to this inverse mapping and conclude that there exists a circle C: p2 + q2 < p'2, 
with p' depending only on p and k, such that x2(p,q) + y2(p,q) < p2. It follows 
that p2 + q2 > p" for (x,y) in R, and hence p* + q2 < 1/p'2 throughout 3). 
Having a bound for p and q in 3D we may apply Lemma 2 and derive a Holder 
inequality for p and q in the closed subdomain x2 -+- y* < 1. 

2. Lemma 2 is a consequence of the following lemma (which is used again 
in §6, 2, 3 and §9, 3). 

I^emma 3: Let p and q be continuous functions defined in a domain CL 
and having continuous first derivatives satisfying the inequality 

(3.2) pi + pi + ql + ql < k(p,q, - p.q.) + kt 

in Ot, where k and k, are non-negative constants. Assume that \q\ < K, . Let 
<B be any closed subdomain of d and denote its distance from the boundary of 
<J by 2d.   Then there exist positive constants M and o < 1 depending only on 

'Lavrentiev derives thia in fl of "A Fundamental Theorem of the Theory of Quaai- 
oonformal Mappings of Two-dimensional Regions," Isvestiya Akad. Nauk SSSR, Ser. Matem. 
12, 1948, pp. 613-554. English version: A.M.S. Translation No. 29. Lavrentiev ascribes the 
result to Ahlfors who did not publish it. 
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k, kx , K, and d such that the following inequality holds 

// r-(pl + pi + ql + ql) dxdy<M, 

where the integration is extended over any circle C4 with centre in (B and radius 
d; r denotes the distance from the centre of the circle to the point of integration. 

The proof of Jjemma 2 follows immediately from Lemmas 3 and 1. 
The remainder of No. 2 and Nos. 3, 4, are concerned with the 

Proof of Lemma 3: Consider any circle Cd with centre in <B and radius 
d and let C be a concentric circle with radius 3ii/2 (it lies in 0t) in which polar 
coordinates (r,6) about the centre are introduced. 

We introduce a function f(r) defined in the circle C with the following 
properties: (a) f is a continuous function of r alone, and is continuously differ- 
entiable; (b) f is identically one for 0 < r < d and decreases monotcnieally to 
zero as r tends to 3d/2." 

We multiply (3.2) by r"afa, where a < 1 is a positive number to be deter- 
mined later, and integrate over C, denoting ffc r~'{7(p] +- pi) dx dy by Ic[p] 
(and similarly for o); we obtain 

Ic\p] + Ielq] <kjf r-'t*(p.qm - p,q,) dx dy 

(3.3) 

+ *• ffr-t'dxdy~I. 
c 

Our aim is to estimate the right hand side I of the inequality in the form / < 
c{Ic[p\ + Ic[q\) + c «here c < 1 and c are constants; this estimate, inserted in 
(3.3) would yield a bound for Ic[p] + Ic[q], and hence (by the property (b) of f) 
a proof of Lemma 3. 

Integration by parts of the first integral on the right (integrating the 
derivatives of q) yields the identity 

(3.4) k ff r-'f(j>,q. - p,q.) dxdy=-k Jf (r"'rtrflCp/. ~ PS.) ** dy. 
c c 

Here the subscript r refers to differentiation with respect to r; r~ "f* is a function 
of r alone. Since f vanishes on the boundary of C the integration by parts does 
not give ri»e to a boundary integral; this i3 the reason for introducing f. The 
integration by parts would certainly be valid if p(x,y) had continuous second 

•One may prove the lemma without introducing the function f; this would involve finding 
estimates for integrals /(«) — ffc, r~"(v\ + v\) dx dy, over circles of radius • from a differen- 
tial inequality satisfied by /(*) as a function of ». The use of the function f was suggested by 
Friedrichs in order to by-pass the differential inequality and to enable one to obtain the esti- 
mates for I(t) directly. 
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derivatives. We may however approximate p by a sequence of functions p. 
having continuous second derivatives, whose first derivatives also approximate 
those of p. Clearly the identity (3.4) holds for these functions p. and letting 
n —»a> we see that (3.4) holds also for the function p(x,y). 

Replacing the first integral on the right of (3.3) by the integral on the right 
of (3.4), which we write as two integrals, we express / as the following sum of 
integrals 

(3.5) /-/, + /, + /., 

where 

and 

11 = -k fj 2tt,r-aq{ps, - p.r,)dxdy.. 

7, = k* tj r '"'r'gGv-. - p,r.) dx dy, 
c 

h = *, // r-'fdxdy. 

The integrals 7, and /, are easily estimated in terms of 7c[p] + Ic[q]-   Con- 
aider first 7, ; since £* < 1 we have 

(3.6) T,<k,ffr-dsdy~^-a(^)"'. 
C 

Next, 

7, < 2k ff r- | qt, \ {Vpl + p'.dx dy 
c 

<kff r-lKq'f, + *-'?&. + pi)] dx dy " 

where « is any positive constant.   Since ! q j < K, we have 

(37) 7, < kKKl Jf r"mf* dxdy + *«~7cfo]. 
c 

3. Estimate of I,.   We note first that the term n,r, — p,r, in It, expressed 
in polar coordinates, is simply (l/r)p. , so that the integral 

f for. - P.O d$, 

taken around any circle r — constant, vanishes.   It follows that the double 

"Tbia follow! from the general inequality | ab | ^ J(«o' + «_l&*), where • is any positive 
number. 
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integral 

// f(r)(ps. - p,r.)r dr d8 

vanishes identically for any function /(r) which is a function of r alone. Thus, 
adding any function of r alone to q in the integral I, does not change the value 
of the integral. Let q(r) denote the value of q{r,8) for 8 — 0, q(r) = q(r,0). 
Clearly q(r) is a function of r alone, therefore, as a consequence of the previous? 
remarks 7a may be written in the form 

(3.8) I, = ka [f r—Yiq ~ q)(PS. - p.r,)r dr d8, 
c 

which we now proceed to estimate: 

/, < ka ff r-fV' \q-9\  V^r+^Jr dr dd 
c 

<ka ff r-f | [r-'(q - q)' + pi + p\)r dr d$ 
c 

- y / r— Yr drj{q- q)1 d8 + ^ Ic[p]. 

Let us investigate the integral m (q—o)* dB occurring above. By the defini- 

tion of q, the function q — q, considered as a function of 8, vanishes at 8 •» 0. 
We may therefore estimate the integral of the square of the function in terms of 
the integral of the square of its derivative: 

f> (q - q)' d8 = f*' de[f' q. d*j   < f*' de[of' ql d*) 

by Schwarz's inequality, 

< 4T» /* ' q] d8. 
Jo 

Thus, since ql + ql m q* + (l/r*)ql, we have 

(3.9) f(q-q)*d8< 4»V f> (ql + tf) dd. 

Inserting this inequality into the last estimate for I, we obtain finally the 
estimate 

(3.10) /, < 2rikalc[q] + ^'Icfrl 

4. Completion of Proof. We have derived the estimates for /,,/,, and I, 
given by (3.7), (3.10) and (3.6), respectively.   Inserting their sum as an estimate 
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for /, into (3.3), we obtain the inequality 

Ic\p] + Iclq] < (A*"' + ^clp] + 2T'*a/c[g] 

c 

This inequality will enable us to estimate Ic[p] + IC[Q] provided that each of the 
coefficients of Ic[p] and Ic[q), on the right, is less than unity (equals, say, 2/3). 
This is achieved by choosing appropriate values for * and a which, up to ncv, 
were arbitrary.   Choose a < 1 so that 

.a,     ^2 

and then choose x so that 

2r,ka < | , 

h -i   ,  **      2 

With K and a thus fixed we have 

Ic [p] + /elf] < 3A«tf? // r-tf rfi dy + £*L (^)"". 

The terms on the right are bounded, thus we have 

Ic\p) + /ck] < M, 

where M is a constant depending only on k, kt , Kt and d. 
Since f (r) is equal to unity for 0 < r < d, i.e. in Cd, it follows that 

IM « // r-^ + pi) dxdy> Jf r-'(p\ + p$ dx dy. 
c c< 

Thus 

// r-(p] + p^dxdy + ff r-(ql + q^dxdy<M, 
C< C. 

where M is a constant depending only on k, k,, K, and d.   The inequality holds 
for any circle C4 with radius d and center in <S. 

Thus Lemma 3 is proved. 

5. Remark*. The assumption made in Lemma 3 that the first derivatives 
of p and q are continuous is unnecessary. It may be shown that it is sufficient 
to assume that the first derivatives of p and q are measurable, that integrals of 
the form Ic[p] and Ic[q] converge, and that inequality (3.2) is satisfied almost 
everywhere. 
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We note further that the bound \q\ < Kt was used only in estimating /, . 
But, for this purpose a bound for the double integral of q* would have sufficed. 
It follows, therefore, from the remarks at the end of {2, 2 that if Ct and the 
closed subdomain (B are bounded and connected then the functions p and q of 
Lemma 2_satiefy a Hblderinequality in <B with constants which depend only 
on k, fc,, Kx and d, where K, ia a bound for the integral of the square of one of 
the functions p, q over the domain Q. 

By a refinement of the argument on page 120 (and by a somewhat different 
definition of q) we may eliminate the factor 4r* in (3.9) and obtain a Holder 
inequality for p and q having as exponent any positive number less than l/k. 
By a somewhat different procedure, namely usinj- "growth" of the Pirichlet 
integra' described in $2, 2, we may obtain a H6lder inequality with exponent 
equal to l/k. 

We note finally that since the estimates used in proving Lemmas 2 and 3 
are local the lemmas may be extended to non-planar domains, say domains on a 
Kiemann manifold. 

The proof of Lemma 2 may be extended to quasi-conformal mappings in 
any number of variables and yields a Holder inequality for such mappings. 

4. Proof of Theorem IV 

Let z be the given solution of 

(1.3) Az.. + Bz„ + Cz„ + D «0 

occurring in Theorem IV. To derive the Holder inequality satisfied by the 
first derivatives p = zx, q * :, of z it is sufficient, in view of Lemma 2, to prove 
the following 

Remark: If z is a solution of (1.3) satisfying conditions (i)-(iii) of Theorem 
IV then p and q satisfy an inequality of the form (3.2), with constants k and kt 

depending only on K. Kx and \ of conditions (i)-(iii). 
The proof of Theorem IV then follows immediately from Lemma 2 which 

may be applied, since p and q are bounded by Kx . 
The Remark is easily proved: by the elliptic ity of the equation (see (1.4)) 

the function C is positive, so we may divide equation (1.3) by C: 

(4.1) Ep, + Fp, + q, + G = 0, 

where E - A/C, F - B/C, G - D/C. From the conditions (of Theorem IV) 
on A, B, C, D it follows that the coefficients E, F, G are bounded in absolute 
value by K/\ and that for any real numbers £, t> the inequality 

(4.2) Ef + Ft, + u* > £ (f + n7) 

holds in Ct. 
Consider the pair of equations satisfied by p and q 

(4.1) Ep. + Fp, + q, + G = 0, 
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and 

(4.3) p, - qM - 0; 

equation (4.3) is an identity in (x,y).   Multiply (4.1) by p, , (4.3) by p, , and 
add; after transposition of some terms to the right side we obtain 

Ep\ + Fp.p, + p\ = ptq, - p.q, - Gp. . 

By (4.2) the left side of this equation is not less than \(p] + p\)/K so that 

ji (pl + pi) < p.q. — p.q, — Gp.. 

Since \G\< K/\ we see that 

Gp, |  < §r (C + C-'pT), 

so that, on addition 

(4.4) p.rp, + ?. + ?,<y (p,7. - p,gr> + -jr, 

which has the form of (3.2). 

Remark: Following the remarks of §3, 5, it may be shown that in deriving 
a Hdlder inequality for the first derivatives of a solution z of (1.3) it is sufficient 
to assume that p and q are bounded, and have measurable derivatives, that 
integrals of the form (2.1) converge, and that (4.1) and (4.3) are satisfied almost 
everywhere. In fact if Q. and the closed subdomain (B are bounded and con- 
nected sets it follows from the Remark of §2, 2 and from Lemma 3 that the 
bound for only one of the functions (say | q | < /£,) is needed. 

2XV"  ' v  *"" 

where c is any positive number (see footnote 10 on page 119).   Inserting this into 
the previous inequality which we multiply by K/\ we obtain the inequality 

pl + pl < y (p.q. - P.q,) + 2X1 (c + C"'PD- 

Now choosing c &o that K*c~l/2k* = any number less than one, say \, 

c = K*/\' 

we find 

P.+P,<^£ (p.q. - P.q.) + -^4. 

Similarly we may show that 

q. + q. < -y (p.q. - p.q.) + -^ 
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We note further that the syatem of equations (4.1) and (4.3) for p and q is 
elliptic. One may show in a similar manner that two functions p and q, which 
are solutions of a general linear elliptic system of two equations of first order, 
satisfy a Holder condition whore constants may be estimated as above. This 
was also done by Morrey in (13]. 

5. Proof of Theorem I 

We consider the differential equation 

(1.1) F{x,yj,p,q,r,8,t) = 0 

in the domain 20. Let (B be any closed subdomain in 3D; deno'e its distance from 
the boundary of D by 2d. Let Q. bo the open domain consisting of all point* in 
3D whose distance from the boundary of 3D is greater than d. Clsarly Q. contain* 
d.   Denote the closure of G. by Q. 

I<et (x,y) be any point of Q. and define the difference quotient 

j{z>y) _ <* ± *,y) - *&& 
h 

where A is a positive constant less than d.   Consider the differential equation 

F(x,yjt,.. • • • , O - 0 
at the points (z + h,y) and (x,y). Subtraction of these expressions result* in the 
equation 

F{x + h, y, z(x + h, y), z.(x + *,*),*••, z„(z + a, v)) 

- F(x, y, z(x, y), z.'Kx. y), • • • . z„(x, y)) - 0. 

The left hand side may be expressed by 

£ F(x + Th,y, (1 - r)z{x,y) + «(z -4- h,y), • • • , (1 - r)z„(x,y) 

+ rz„(x + h,y)) dr 

= A[F, + FV + f>! + />; + FV„ + F.*i. + FV„] 

where in general <t> represents 

/. 

4> -  f  *(x + ra,y, (1 - r)z(i,y) 

4- «(x + h,y), • • • , (1 - T)z,£z,y) + «„(z + n.t/)) dr. 

The difference quotient zk evidently satisfies the linear differential equation 

PJL + $/» + FS,, + F£ + F/. + FJ + F. - 0. 
Since the first derivatives of F are continuous, and since G is closed, we may be 
sure that for k sufficiently small the functions F,, F,, • • • , Ft differ but slightly 
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from F, , F, , • • • , F. and hence are bounded by 2K (K being the given bound 
for F, , F,, • • • , F,). 

Furthermore, we may be sure that for all real numbers (, ij, 

F,? + FJv + f\f >*(e + i*) 

for all (x,y) in (i. Since z) and z\ tend to z„ and z„ as /i —» 0 they arc bounded 
by 2A", for /i sufficiently small. These statements follow from assumptions 
(i), (ii) a,nd (iii) of Theorem I. 

The equation which z satisfies may be written in the form 

(5.1) F,z\, + FA. \  F& + b =• 0 

where D •= F,zM -f- f\z* + F,zk + F, .   Note that for h sufficiently small 
(i)    Fr , F, , F, , i), are bounded by a constant depending on K and K, , 
(ii)    zK(x,y) has continuous first and second derivatives, the first derivatives 

being bounded by 2A', in Q. 
(iii)    For all real numbers £, r\ the inequality 

F£ + F& + Frf >\(? + n') 

holds for all (x,y) in a. 
Theorem IV proved in §4 may therefore be applied to equation (5.1) in 

the open domain G, and we find that z\ and z\ satisfy a Holder condition in the 
closed sulxlomain (B, with constants depending only on K, K, , X and d. That 
is, this Holder condition is independent of the value of h. Letting h —• 0 we 
see that the limit functions lim4_<> z\ and lim*.* z\ satisfy the same Holder con- 
ditions; these limit functions are simply z,, and z„ . 

Similarly we may show that z„ satisfies the same Holder condi ion in (B and 
Theorem I is proved. 

As mentioned at the end of the previous section, the results of Theorer- IV 
rnay be established for e. system of elliptic equations of first order in two func- 
tions p{x,y) and q(x,y). Theorem I nay therefore be extended to a nonlinear 
system in two functions p(x,y), q(x,y).   The statement is the following: 

If p(x,y) and q(x,y) have continuous first derivatives and satisfy a general 
(nonlinear) elliptic system of first order then the first derivatives of p and q 
satisfy Holder conditions in any closed subdomain of the original domain. 

The author has generalized this result to the most general elliptic system of 
equations for functions of two independent variables. This result will appear 
in a later communication. 

Another generalization of Theorem I is mentioned in footnote 3, page 104. 

6. A Sharp Form of Theorem TV 

1. In thin section we shall modify Theorem IV by making additional 
assumptions which enable us to derive a Holder inequality for the first derivatives 
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of the given solution z(x,y) of (1.3) in the whole domain Ct.   We consider func- 
tions z(x,y) which are defined in the closure Q of a domain a of type L, (see §2, 1) 
and satisfy the condition: 
(A) z and its first and second derivatives are continuous in Q, and the boundary 

values of z, regarded as functions of arc length, have continuous first and 
second derivatives—the second derivatives being bounded  in absolute 
value by a constant K, . 
We now restate Theorem IV in a sharper form as 

Theorem V: Let z(x,y) be defined in Ct au«i outisfy the elliptic differential 
equation 

(1.3) Az„ + &„•:- Cz„ + D - 0 

in Ot.   Assume that conditions (i)-(iii) of Theorem IV are satisfied and assuue 
further that i satisfies condition (A). 

Conclusion: Th*; first derivatives of z satisfy a Holder condition in Q. with 
coefficient and exponent depending only on A, A,, A,, X (of conditions (i)-(iii) 
and (A)) and the domain a. 

We prove, really, a more general statement from which Theorem V follows. 
This is a generalization of I^rnma 2 of §3. 

Lemma 4: Let z(x,y) satisfy condition (A), and assume that the first 
derivatives p, q of z are bounded in absolute value by a constant A, and satisfy 
the inequality (3.2) 

P« + pi + q\ + ql < k(p.qt - p,qw) + kx , 

in d, with k and kt non-negative constants. 

Conclusion: p and q satisfy a Holder condition in Q. with coefficient and 
exponent depending only on k, k, , Kx , K7 and the domain CL. 

That Theorem V is an immediate consequence of Lemma 4 may be see.i 
with the aid of the Remark at the beginning of §4. 

Lemma 4 may be strengthened: if, instead of using the bound K2 for the 
second derivatives of the boundary values, we indroduce a bound A', for the 
integral of the squares of these second derivatives—with rcspoct to arc length 
along the boundary—then, with the aid of the remarks at the end of §7, we may 
obtain a Holder inequality for p and q with constants depending only on k, kt , 
A, , A, and a.   This stronger result will not be used. 

Lemma 4 is related to certain results obtained by J. Leray in a paper [7] 
concerning nonlinear elliptic equations of second order. In Sections 5, 6, 10-12 
of [7] Leray derives an estimate of the modulus of continuity of the first derivatives 
of a solution of a nonlinear elliptic equation of the form (1.1)—making use of 
an inequality of the form (3.2) for the derivatives of the solution and of ad- 
ditional properties of the differential equation. I^mma 4, however, yields an 
estimate for the Hdlder continuity of these first derivatives. 
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2. Outline. Lemma 4 will be proved by generalizing the arguments used 
in §3 to prove Lemma 2. There, in proving first Lemma 3 (§3, 2) we derived 
estimates for integrals of the form 

(6.1) // r-(pi + p\ + q] + ql) dx dy 
c 

(see (2.1)) over circles C lying entirely inside the domain. Lemma 1 implied 
that p and q satisfy a Holder condition in a subdomain of Ct. In the preser.* 
discussion we shall derive estimates for such integrals over the intersection of 
O with all circles C having some fixed radius and centre in (L Ti.e derived 
Holdei- inequalities will then follow from Lemma 1'. 

The estimates for integrals over circles lying „-iiiirely inside Ct, away from 
the boundary, are already furnished by Lemma 3. The proof of Lemma 3 is to 
be generalized to yield estimates for integrals over circles which intersect the 
boundary of Q (the integrals extend only over the part of the circles lying in 
Q). In order to motivate the discussion below, imagine the argument given 
in §3, 2-4 for the proof of Lemma 3, applied now to a circle C, which intersects 
the boundary of Ct; let us see how far it may be extended. As we shall see, it 
may be carried over completely, with minor adjustments, except in one particular. 
It mvolves an integration by parts (see (3.4)), which in §3 yielded no boundary 
integral, but which here gives rise to an integral on the boundary of Ct; in order 
to carry through the rest of the argument it is necessary to obtain estimates for 
this boundary integral. Upon examination of the terms in the integral it is seen 
that the functions p — zM , q » zw occur in the form q(p, dx + p, dy) =* qp,d, , 
where p. is the derivative of p with respect to arc length s on the boundary; it is 
apparent that this integral may be estimated, provided that a bound for | p. | on 
the boundary of Ct is known ( | q | is bounded by /C,). The function p. =• (*,), 
is a combination of second derivatives of the function z; of these a hound Kt is 
known only for the second derivative of z along the boundary with r«spect to 
«r (by condition (A)). Thus a bound for p, is known (leading to an estimate tor 
the boundary integral) only if, on the boundary, p is the derivative of z with 
respect to «, i.e., only if the part of the boundary which intersects C is a straight 
segment parallel to the x-axis. 

It now becomes clear how we should proceed in order to obtain the estimates 
for the integrals (6.1) over circles C which intersect the boundary of Ct. First 
we map the boundary (at least locally) into a straight segment r—this being 
achieved by a local transformation of variables—then we follow the argument 
described above, to obtain estimates for the integrals over the intersections of 
the domain with circles C which intersect the straight segment r. On repro- 
duction of the original variables these estimates yield the desired estimates for 
integrals over circles intersecting the boundary of Ct. 

In order to carry out this procedure we formulate first the result which one 
obtains on applying the arguments of §3, 2-4, used in the proof of Lemma 3, to 



128 LOUIS  NIRENBERG 

a circle which intersects the boundary of a in a straight segment.   Its proof, 
which is somewhat lengthy, is postponed to §7. 

Lemma 3': Let p(x,y), q{x,y) be defined in a domain Ct in the x.y-plane 
and satisfy all the conditions of I^ernma 3. Assume that part of the boundary 
of Q. consists of a straight segment I\ which we may suppose to \>e on the r-axis, 
and that p. q and their derivatives of first order may IXJ defined on V so that they 
are continuous in Ct + V.   Assume finally that on I* the condition 

I p. I < Kt 

is satisfied, where K2 is some positive constant. 
Consider a poinf. P in Ct whose distance from any boundary point of ft not 

on T ;•> net le*,s thi-.n some punitive constant 2f. Denote by C, the intersection 
of G. with a circle h°.ving centre P and rpdius r. 

Conclusion: There exist positive constant? M and a < 1, depending only 
on k, k\ , Kx , Kt and c such that the inequality 

// r" V, + p\ + 9?. + q\) dx dy < M 

holds. 

3. Proof of Lemma 4. With the aid of Lemma 3' (which is proved in §7) 
we proceed now with the details of the outline for the proof of Lemma 4. The 
discussion is mainly a technical one, no new ideas are involved, but it is pre- 
sented at length in order to make clear how a similar procedure, described in 
§9, may be carried out. 

In order to prove Lemma 4 it is sufficient to show that there exist positive 
numbers d', c', M' and a' < 1 depending only on k, kt , K, , Kt and the domain 
(2, sucli that 

(6.3) // r-V, -r p\ + ql + $ dx dy < M', 
c- 

holds, where Ct- denotes the intersection of Ct with a circle of radius c', having 
as centre any point P whose distance from the boundary of Ct is less than 2d'. 
For, if such numbers, have been found, consider the closed sulxlomain <B con- 
sisting of all points of Ct whose distance from the boundary of Q. is n^t less than 
2d'. All the conditions of Lemma 3 are satisfied; applying the lemma to the 
subdomain <B we conclude that there exist positive numbers M, and a, < 1 such 
that the inequality 

// r-"(p] + p\ + ql+ q\) dxdy<Mt 

ev 
holds, where C4- is any circle with centre in (B and radius d'.   Setting now 

a — min (a',a,) 

M = max (M\Af,) 

d =» min (c',d',l), 



ELLIPTIC  PARTIAL DIFFERENTIAL  EQUATIONS 129 

we may combine the last inequality with (6.3) and conclude that the inequality 

(6.4) ff r-(pl + V\ + q] + q\) dx dy < M 
Ct 

holds, where Ct represents the intersection of a with any circle having centre in 
a and radius d. The conclusion of Lemma 4 now follows by use of Lemma 1'. 

With the eid of Lemma 3' we proceed to find the numbers d', c', M' and 
a'. We find first the constant d' which is determined by the domain a alone. 
Let Q be a boundary point of a. Since Q is of type Lt (see §2, 1) the boundary 
curve containing this point may be represented by an equation of the form 
V m j\x) >n a neighborhood of Q, and we m«\y introduce 

(6.5) I - x,       n-y- /(*) 

as new independent variables in a neighborhood of Q. There exists then a 
circle with centre Q having the properties: (a) it contains an arc of the boundary 
curve containing Q and no other boundary points of a, (b) the transformation 
(6.5) maps this circle in a one-to-one way onto a domain in the (,n-plane. 
Clearly the arc of the boundary curve which contains Q and lies in the circle is 
mapped onto a segment of the line n = 0. Thus, if the image of the part of the 
circle lying in Ct is denoted by ft, ft has a segment on the (-axis as part of its 
boundary. In the circle about Q the function }(x) and hence the functions 
t(*>y)i v(x,y) have continuous second derivatives. Introduce K, an upper bound 
for the derivatives of £ and tj in the circle, so that ( and i? satisfy the inequalities 

(6.6) |{. |, |n. i, ••• , |i,„ | <K. 

Such a circle may be drawn about every boundary point Q, and since the 
boundary of fit consists of a finite number of closed curves (having finite length) 
we conclude that there exist positive constants d' and K such that every circle 
with centre on the boundary of Ct and radius 4<f satisfies conditions (a) and (b) 
(of the previous paragraph), and such that new variables £, ij introduced in these 
circles (as described by (6.5)) uatisfy (6.6); c" is thus determined. 

Before proceeding to determine the constants c', Af' and a' we note that 
lengths are not stretched too much under the mapping of the circles (of radius 
4d') about boundary points, described by (6.5). Namely, it is easily sc-en that 
there exists a positive constant K, depending only on K, such that the distance 
I between any two points of such a circle and the distance V between the image 
points under the mapping satisfy the inequality 

(6.7) « < j, < «~\ 

To find the constants e', M' and a let P be any point of a whose distance 
from the boundary of a is less than 2d', and let Q be a boundary point of a 
nearest to P. With Q as centre draw a circle of radius 4d'. From the definition 
of d' it follows that new variables £,i» may be introduced, as described above, 
mapping the circle onto a domain in the {,7-ptane.   As before, denote by ft the 
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image of the part of the circle lying in d; ft has a segment on n — G as part of 
its boundary. Since the distance of P from the circumference of the circle about 
Q is not less than 2d' it follows from (6.7) that the distance of P', the image of 
P, from any boundary point of ft not on t) • 0 is not less than 2*d'. Set c — «d\ 

In ft the function z of Lemma 4 may be regarded as a function of {, J\, 

which we denote by «'({,>»)• What properties does the function z' have as a 
consequence of the assumptions of Lemma 4? First, it is easily seen from these 
assumptions, and from (6.6), that the derivatives of z', p' — z[ , q' — zj , are 
bounded in absolute value by a constant K[ and satisfy an inequality 

P? + P? + ?i" + ?;' < k'(pWt - piq'J + k, , 

wh<re K', **' *nd k\ are constant* depending on K, , k. k, and A". Furthermore, 
it is seen from condition (A), assumed in Lemma 4, that on the segment of 
tj = 0 which telongs to the boundary of ft, the inequality 

I Pi'I = l*i«l <K 
holds, where K'7 is a constant depending on K, and K. 

We note, finally, as a consequence of (6.6) and of the boundedness of p' 
and q', that at corresponding points (x,y), (£,n) the inequality 

(6.8) £ f p\ + q] + ql < K>(J>? + p? + 9,'* + q? + 1) 

holds, where *, is a constant depending only on Kt and K ((6.8) is used later). 
From the properties described above it is clear that the functions p' and 

q', satisfy in ft all the conditions of Lemma 3'. The domain G and the point 
P in the lemma are replaced by ft and P', and the constants k, A;, , AT, , Kt and 
c of the lemma are replaced by k', k[, K[, K[ and c — «d'. From the conclusion 
of Lemma 3' we infer that there exist positive constants M and a' < 1 depending 
only on k', k[, K[, K'% and c, such that the inequality 

<6.» // p-(pi7 + p? + q? + ?0 di dv < M 
c*. 

holds, where C't is the intersection of ft with a circle of radius c about P*, and p 
denotes the distance from the point of integration to P'. 

On reintroduction of the variables x,y the integral over C'c may be con- 
sidered as an integral over a domain in the x,y-p\&nc (the Jacobian of the trans- 
formation Z(x,y), ri(x,y) is unity). From (6.7) it follows that this domain con- 
tains the intersection of Q. with a circle having centre P and radius 

KC = «*<*'. 

Set c' *= K*d'—this is the desired constant c'—and denote the intersection of Ct 
with this circle by C<- . It follows further, from (6.7), that if r is the distance 
of a point of Ct- from P, and p the distance of its image from P*, then 

r > «cp. 
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From these remarks we infer that 

// r-'ip] + pi + q] + q\) dx dy < ff «"V"'(p! + pi + ?! + tf) *i dt, 
cv c-. 

< «-"' // p-"'«,(pr 4- p," 4- tf* + g," + 1) rf| dn, 
c. 

in virtue of (G.8), 

< *-''K,(M + ff t-'didv) 
c. 

in virtue of (6.9), 
< o constant Af', 

so that (6.6) is proved. 
We have found the constants d', c', M' and a' < 1, depending only on k, 

ki , Ki , Kt and the domain d, and proved that with these constants the in- 
equality (G.5) holds.   This completes the proof of Lemma 4. 

7. A Special form of Lemma 3. 

This section is devoted to a proof of Lemma 3', which was used in §6, 3 to 
prove Theorem V. 

Lemma 3': Let p(x,y), q(x,y) be defined in a domain Ct and hav? continuous 
first derivatives satisfying the inequality (3.2) or 

(7.1) pi + pi + ql + ql < k(p.q, - p,q.) + k, 

in Ct, where k and /:, are non-negative constants. Assume that part of the 
boundary of Ct consists of a straight segment r, which we may suppose to be 
on the x-axis, and assume that p,q and their derivatives of first order may be 
defined on r so that they are continuous in Q. -f- r. Assume finally that | q \ < Kt 

and that on r 

(7.2) | p. | < K, 

where Kt is some positive constant. 
Consider a point P in Ct who.»» distance from any boundary point of Q, not 

on r is not less than some positive constant 2c. Denote by C, the intersection 
of Ct with a circle having centre P and radius c. 

CoTtclusion: There exist positive constants M and a < 1 depending only 
on k, ki , Kt , Kt and c such that 

// r~"(pl + pi + ql + ql) dx dy < M. 
c. 

The proof proceeds in a manner similar to that of Lemma 3 in §3, 2-4; 
rather than rewrite all the details we present merely the modifications due to 
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the additional assumptions, and refer whenever possible to the calculations 
given there. 

Proof: Denote by C the intersection of Q. with a circle having centre P 
and radius 2c. If the distance from P to r is less than 2c, which is the case 
of most interest to us, the boundary of C consists of a circular arc and a straight 
segment r". As in §3, 2, we define in C a function f (x,y) which depends on the 
polar coordinate r (distance from P) alone, is identically one for 0 < r < c and 
decreases monotonically to zero as r tends to 2c. We follow the procedure of 
that section; multiply (7.1) by r"°fa and integrate over C to obtain (3.3). Here 
a < 1 is a positive constant to be determined later. Then perform the integra- 
tion by parts as indicated there. This gives rise to a boundary integral over 
T', since f does not vanish along I"; therefore the expression (3 5) for i (vhe 
right side of (3.3)) is modified by the addition of this boundary integral: 

(7.3) /«/, + /, + /, + /« 
where 7, , 7, and /, are the integrals defined on page 119 (integrated over C), 
and lt is the boundary integral 

7« - k f   f'fqip. dx + p. dy) 
Jr- 

- * f   r-fqp. dx, 

since V is a segment on the x-axis. 

* jr 

Region    of    Inttgrotion 
Ficuu 1 

We must now obtain estimates for the integrals 7, to I, in terms of 7,[p] -f 
7,(9]. The integral Ix is bounded as in (3, 2 by (3.7), in terms of an arbitrary 
constant K, while a bound for 7, is given by (3.6). The integral 7« is easily 
"stimated, using (7.2) and the inequality \ q \ < K, , 

h<k\  r"? \qp.\dx 
Jr- 

< kK.K, f  r-'dx 
J r* 
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since fa < 1, finally 

(7.4) 74 < 2kKtK, I" | x I"" dx - ^iLKi (2c)'-. 
Jo 1 — a 

We must modify the argument for estimating 7, given in §3, 3.   Consider 

7, = ka ff r-'-'rYjV, - P.r.)r dr dd 
c 

where (r,0) are polar coordinates about P.   Since p,r. — pMr¥ — 1/r p# we note 
that the integral 

p(r) =  / (ps. - F.r,) dd 

—taken around the arc of the circle r — constant, which lies in C and has end 
points P, , P, (see sketch)—is given by 

Pir) = I <p(P.) - p(P,)). 

Introducing the function q(r) « q(r,0), as in 53, 3, we subtract and add q(r) to 
q(r,8) in the integrand in 7, and write the integral as a sum of two integrals 

7, - n + U', 
with 

and 

7J - ka ff r—l{>(.q ~ V)(PS. ~ P.rjrdrd8, 
c 

U' = ka ff r—Yfos. ~ PS.)r dr d$ 
c 

•1« 

— ka j    r~"fqpdr. 
Jo 

The integral I, is similar to the expit^iioii (3.8) and may be estimated ii. a 
similar manner, so that the estimate (3.10) holds for 1'3 . 

To estimate 7J' we observe that the term 

W) = \ (p(P;,  • piP,)), 

which occurs in the integrand, may be bounded by 

| pVr) j < 2K2 . 

This follows from (7.2). using the theorem of the mean, and from the fact that 
the distance between the points P, and P, (which lie on a circle of radius r) is not 
greater than 2r.   Since | q \ < Kt and f * < 1 it follows that 

W < 2kaKlKt [*' r-'dr = -*"*'** (2c)'-. 
Jo 1 — a 
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Adding this estimate for I" to the estimate (3.10) which holds for /, we find 

7, < 2x,kalc[q] + \kalc\p] + r— **,*,(&)'". 
4 l — a 

Combination of this estimate with (3.7) for /, , (3.6) for J, and (7.4) for 
/«yields a bound for / (given by (7.3) which, when inserted into (3.3), yields 

lc[p\ + Iclq] < A(K,a)Uc\p] + Ic[q\) + B(K>a) 

where A(K.X) and B(K,<X) are constants depending on « and a (which up to now 
are arbitrary) and also upon k, kx , Kt , K7 and c. As in 53, 4, WP may choose 
a ind K so thut A(K.O) is less than unity—say 2/3.   Then 

h\p] H  Iclq] < 3B(x,a). 

Since f (r) h rqual to unity for 0 < r < c it follows that 

Iclp] = ff r-ftf. + pi) dx dy > ff r-(p) + V\) dx dy, 
c. 

where Cc is the intersection of Q. with a circle with centre P and radius c.   Thus 
from the estimate for 7c[p] + Iclq] w^ find 

// 
r-tf. + p\ + q\ + q\) < M, 

where M and a < 1 are positive constants depending only on k, kt, K\, Kt and 
c; Lemma 3' is proved. 

Remark: In this proof the bound M depends on the bound Kt for | p, \ on 
T. By modifying the proof slightly it is possible to show that M depends merely 
on /Cs—in addition to k, kt , Kt , c -where K3 is a bound for the integral of pi 
along r. 

8. Quasi-linear Elliptic Differential Equations 

1. Outline. An application of Theorem V to quasi-linear elliptic equa- 
tions will now be presented.   We will consider an elliptic equation of the form 

(8.1)        A(x, y, z, z, , z,)z„ + B(x, y, z, z, , z,)z„ + C(x, y, z, z, , z,)z„ = 0 

in a convex domain, and prove the existence of a solution taking on given 
boundary values. The existence of a solution of this boundary value problem 
was first derived by J. I-eray and J. Schauder [9] as an application of their 
theorems concerning the degree of a mapping in Banach space. They assumed 
that the coefficients of the equation are twice differentiable with respect to all 
arguments. Previously similar existence theorems had been derived—but 
under additional assumptions. Schauder proved the existence of a solution 
under the assumption that the problem of the corresponding general inhorao- 
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geneous equation, with an arbitrary given function of x and y on the right side, 
and with arbitrary prescribed boundary values, has at most one solution [18]. 
Much earlier S. Bernstein [2] showed the existence of a solution under the 
assumption that z does not occur in the coefficients (they are functions of x, 
V, *< , *.)• 

The following approach is used here, as well as by Leray and Schauder: 
We solve the linear equation11 

(8.2)       .4(z, y, z, z, , z.)Z„ + B(x, y, z, z, , z.)Z„ + C(x, y, z, z, , z,)Z„ - 0 

for a function Z(x,y) which takes on the prescribed boundary values 4> and 
which corresponds to every function z(x,y) belonging to a suitably denned class 
o: functions. The function Z defines a transformation Z{z) of the class of 
functions z. This class of functions belongs to a Banach space and is mapped— 
under the transformation Z[z]—baok into the Banach space. The problem of 
showing the existence of a solution assuming the given boundary values is thus 
transformed to that of finding a fixed point of this transformation (or mapping). 

Leray and Schauder carried this out by looking for zeros of the mapping 
z — Z[z\. They studied the degree of this mapping at the origin (in the banach 
space) by embedding it in a one-parameter family of mappings for which the 
degroc of mapping is invariant. This family was constructed by solving the 
above equation for a function Zk which takes on the values k$ on the boundary, 
k being a parameter which is allowed to vary from zero to one. For k = 0 the 
solution is Z 3 0 and the mapping z — Z0[z] reduces to the identity—for which 
the degree is unity. Thus the degree of mapping is unity for all k, in particular 
for k — 1, and therefore the equation 

2 - Z[z] - 0 

has a solution. To make sure that the degree of mapping does not change as k 
varies it was essential to know that no solutions of the equations z — Zk[z] — 0 
occur on the boundary of the class of functions considered (in the Banach space). 
Thus certain a priori bounds for solutions of the equations z — Zt[z] = 0 had 
to be established. 

Our method of finding a fixed point of the transformation Z[z] is to use a 
fixed point theorem, due to Schauder [17], concerning completely continuous 
transformations in Banach space. (A transformation of a Banach space into 
itself is said to be completely continuous if it maps bounded sets into compact 
sets). The theorem states: Let T be a completely continuous transformation 
defined in u closed convex set in a Banach space, and suppose that T is continuous 
arid maps this set into itself.   Then the transformation has a fixed point. 

The proof of the existence of a solution of (8.1) as given here and in [9], is 
based on (a) the theory of linear elliptic differential equations—for, in order to 

"In this case the solution of the boundary value problem is unique.   Whether it is also 
unique for the whole general case (8.1) is not known to me. 
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define the transformation Z[z] the linear equation (8.2) must be solved for Z— 
and (6) a priori estimates for the solutions z' of (8.1) and Z of (8.2). The dis- 
tinguishing feature of our discussion, as contrasted to that of Leray and Schauder, 
is the nature of these a priori estimates. They enable us to choose a set of 
functions z which will be mapped into itself under the transfoimation Z[z]-- 
and hence to use Schauder's fixed point theorem. 

Our procedure for obtaining a priori bounds is based entirely on statements 
concerning linear elliptic equations. We remark first that if z' is a solution of 
(8.1) then (8.1) may be considered as a linear elliptic equation for z', with 
known functions of x and y aa coefficients (once the values of z' and its deriva- 
tives have been inserted into these coefficients). From this fact it is not difficulty 
as we shew in No. 3, to derive bounds for z' and iU derivatives of first order. 
In order to obtain estimates for the second derivatives of z' one must know more 
about the coefficients of the linear elliptic equation it satisfies; for instance, if 
these coefficients satisfy a Hclder condition then estimates for the second de- 
rivatives may be obtained. But these coefficients involve the first derivatives 
of the function z', and thus in order to calculate their Hdlder continuity one 
must first estimate the H6lder continuity of these first derivatives. Just such 
estimates are obtained if we apply Theorem V to the equation (still regarded as 
linear) for z'; knowing these estimates we may then calculate estimates for the 
second derivatives of z'. 

Leray and Schauder used estimates for the second derivatives of a solution 
z' derived earlier by Schauder in Section 4 of [18]. His procedure for obtaining 
these estimates was rather involved and made use of the "auxiliary function" 
introduced by S. Bernstein [2] (Schauder referred to pages 119-125 in [2]). 

More explicitly, the procedure we shall employ for deriving a priori esti- 
mates for solutions Z of (8.2) and for solutions z' of (8.1) is the following: We 
consider a solution Z[z\ of (8.2) corresponding to Mime function z and seek a 
priori estimates foi" the function Z. The **»ti?r>N<<»s that onn h#» obtained depend, 
of eouise, en the assumptions on the function z. Assuming at first as little as 
possible we derive a priori bounds for Z and its derivatives of first order. Then 
we supple that these estimates hoid for z and derive, using Theorem V, an a 
priori Holder inequality for the first derivatives of Z. Assuming, ir turn, that 
these new estimates hold for z we derive still stronger estimates for Z—and 
so on, continuing this iteration process. Note that at each stage of this process 
only statements for solutions Z of linear equations are employed. If z' is a solu- 
tion of (8.1) and we take Z = z = z' this process yields the desired a priori 
estimates for the solution 2'. 

We remark that the class of functions z to which the Schauder fixed point 
theorem will be applied will consist of those functions satisfying the a priori 
estimates obtained in the first two steps of the iteration process described above; 
these steps are carried out in Nos. 3, 4. 

C. B. Money attempted (with the aid of Theorem IV, (see (13] Theorem 
I, p. 164)) to show the existence of a fixed point of the transformation Z[z] by 
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an iteration procedure. Starting with a function «I(X,J/) he defined, recursively, 
the functions 

2. = £[*„_,) n = 2, 3, ••• . 

He showed that one can select a subsequence of the zH which will converge to a 
function z(x,y) having continuous first and second derivatives. He then stated 
that the function z{x,y) is a solution of the differential equation; but this need 
not be the case. 

The existence theorem to be proved—for the boundary value prohlem for 
(8.1)— is formulated as Theorem VI. The first two steps of our iteration process 
for deriving a priori estimates for solutions Z and z' of (8 2) and (8.1) are cam.*! 
out in Nos. ?>, !. Bounds for these solutions and their derivatives of first order 
are obtained, and a Holder inequality for these derivatives is derived with the 
aid of Theorem V. These results are then employed in No. 5 in introducing the 
appropriate class of functions z for which the mapping Z\z\ is defined and which 
is mapped into itself by Z[z). The complete a priori estimates for solutions of 
(8.1) arc also derived in No. 5. Finally the proof of Theorem VI is given in 
No. 6. 

In No. 7 the existence of a solution of the boundary value problem is proved 
under weaker assumptions concerning the given boundary values. 

This entire section is completely independent of the rest of the paper, 
except for it reference to Theorem V. The boundary value problem for (8.1) 
may be solved however without the use of Theorem V, whi'*h is a sharp form of 
Theorem IV, but using Theorem IV itself. This is indicated in No. 8. The 
solution so obtained has continuous dt-rivatives of second order in Q, but these 
derivatives need not be continuous in Q.. 

2. Precise Formulation of Problem. Before stating the existence theorem 
in precise form we introduce several Banach spaces which play a fundamental 
role in our discussion. 

We shall always consider functions defined in the closure of a fixed convex 
domain d which is bounded by a curve T of finite length represented by 

x = x(s),       y = y(s), 

and shall assume that the functions x(s), y(s) of are length « have continuous 
derivatives up to the third order, and that r has positive curvature everywhere. 

Denote by Cm the class of real functions z(x,y) having continuous partial 
derivatives up to order m_where m is a non-negative integer (these are to be 
continuous in the closure (i of (i) and by C'.»a the sub-class of functions in C. 
whose derivatives satisfy a Hdlder condition in Q with exponent a, 0 < a < 1. 
Denoting the smallest Holder coefficient by Ha(Dmz) we may norm these func- 
ions as follows 

|| z ||. = max | z | + max | Dz | + • • • + n AX | Dmz \, 
Ad S 

||f II— = \\z\\m + H.(D~z), 
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where D'z represents the i-th order derivative z, i <• 1, • • • , m. With the re- 
spective norms || ||„ and || ||m4«, the classes Cm and C,.,, form real Banach 
spaces. The space C. is defined for any positive number a. Clearly C. contains 
C» if a < 6. 

We note that a sphere in C,.y , 0 < y < 1 is compact in C,*» , 0 < 6 < 1; 
that is, the set of z such that || * ||a«, < // (some positive constant) is compact 
in C,*i (with respect to the norm \\ |!,.i). More generally, a sphere in t\ is 
compact in C. if o < 6. 

We introduce Banach spaces of functions *(») defined on the boundary 
curve r as functions of arc length. Denote by O, the class of functions <t>(s) 
which are rr times continuously differentiable, and by C'm.a the subclass of 
those in Ci, whose m-th derivatives satisfy Holder conditions with exponent a, 
0 < a < 1.   We define the norms of these functions as 

||* ill - max U| + max I*' | + • • • + max | *'"' |, r r r 

II+II:.. = lum + iW), 
where //„'(*'"') is the smallest H6lder constant for the m-th derivative *"" of 4>. 

We now make the assumption that the coefficients A, B, C in the differential 
equation 

(8.1) A(x,yj,p,q)z„ + B(x,yj,p,q)z„ + C(x,y^,p,q)z„ = 0 

are defined for all x, y in the domain Q and for all values z, p, q. We assume 
further that for every positive number K, and for all x, y, z, p, q satisfying the 
conditions 

(8.3) (x,y)ina,       \ t |, | p |, \q \ < K, 

tue coefficients A, B, C satisfy 

(a) a Holder condition in the x, y, z, p, q, with coefficients H(K) and exponent 
£(/£) depending on the value of K, and 
(b) the inequality 

(8.4) M(K)(? + ,*) > A? + B^ + CV > m(K)(? + v
3) 

for all real £, i> where M(K) and m(K) are positive constants depending on K. 
Condition (6) implies that equation (8.1) is elliptic for any values of the 

arguments inserted into the coefficients. 
Let 4>(s) be a given function defined on r and assume that *(«) t C£*. for 

some or, 0 < u < 1. 
Our existence theorem is contained in 

Theorem VI: There exists a solution z(x,y) t Ct of (8.1) in G which is 
equal to * on the boundary I\ Furthermore, there exist positive constants 
H and y < 1 such that every solution z t C, of equation (8.1), which takes on 
the boundary values <t>, satisfies the conditions 

(8.5) ztCt.y,       \\t\\,+y<H. 
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Thus there exists a solution z in Ca+T of the boundary value problem. 
(8.5) gives an a priori b»>und for all solutions (in C2) of (8.1) taking on the given 
boundary values. 

In No. 7 it is shown that the conditions of the theorem may be weakened. 
In order that a solution of (8.1) exists it is sufficient that $(«) be once differen- 
tiable and that the derivative satisfy a Lipschitz condition. The solution will 
then have continuous second derivatives in (3—not necessarily up to the boundary- 

Our definition of the transformation Z[z], described in No. 1, will require 
an existence theoicm for the boundary value problem for a linear elliptic equa- 
tion. Schauder (19] has derived general existence theorems for linear elliptic 
equations; we shall make use of one of his theorems (see (19), pages 277-278). 
He also derived in (i9j a priori estimates for solutions of such equations We 
state the existence theorem in a form suitable for application to our problem, 
and include in the statement the a priori estimate for solutions. 

Consider a linear elliptic equation 

(8.6) a(x,y)Z,. + b{x,y)Z„ + c{x,y)Z„ = 0 

in the domain Q, where the coefficients a, b, c are in C», 0 < ft < 1, and suppose 
of + o{»j + cij* > "*(** + 1*) for all real til where m is some positive constant. 
Let *(s) t CJ,T ,0<7<M<l-bea given function defined on the boundary 
of Q. 

There crisis a unique solution Z in C,*T of (8.6) taking on the boundary 
volucs £. Furthermore, there exists a positive constant kx depending only on || a ||„ , 
li o ||, , || c II, , m and the domain Ct, such that the solution taking on the boundary 
values satisfies the inequality 

(8.7) !U||a>, <*. II* lli-r- 
3. Bounds on First Derivatives. Schauder's existence theorem for linear 

equations will be used to define the transformation Z\z\. But, in order to find 
the appropriate set of functions z which is to be mapped into itself by the trans- 
formation Z[z], we proceed lo derive estiruateji for solutions Z of equations of 
the form (8.2), as outlined in No. 1.   We prove first the general 

Lemma 5: Let Z(x,y) be a solution of a linear elliptic eouation with 
continuous coefficients 

a(x,y)Z.. + b(x,y)Z„ + c(x,y)Z„ = 0,       4ac - 6* > 0, 

in Ct. Assume that Z is continuous in OL and has continuous second derivatives 
in G, and denote the boundary values (on T) of Z by $(«).   Then 

z ||, <*||*!!,' 
where k is some positive constant depending only on 8. 

Proof:   Denote the function Z(x,y)/ \\<f> \\'7 by Z'{x,y); we must prove that 
II Z' ||i < k, where k is some positive constant.   Observe that Z\x,y) too is a 
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solution of the differential equation 

a(x,y)Z'„ + b{x,y)Z'„ + c(x,y)Z'„ - 0 
and that 

ll#IK- i 
where ^(«) denotes the boundary values of Z'. 

Since the equation for Z' is elliptic, and since only second order derivatives 
of Z' appear, we may apply the well-known maximum principle'* for such 
equations and conclude that 

max | Z' | = max | *(«) I < 1. 
a r 

Furthermore, it follows from the eihpticity of the equation, that the surface in 
three dimensional space represented by z — Z'{x,y) is a saddle surface, i.e. has 
non-positive Gauss curvature—for, multiplying the equation by Z'1M we see that 

az:\ + bz:,z'„ + cz:i = c{z;\ - z:j'„). » 
Because the differential equation is elliptic, the quadratic on the left side has 
the same sign as c so that (Z'„Z'„ — Z'.l)—and hence the Gauss curvature of the 
surface—is non-positive. 

We may now apply a theorem on saddle surfaces, due to T. Radu [16], to 
obtain the required estimates on the first derivatives of Z'. Rado's theorem con- 
cerns a saddle yirface represented by an equation z ^= Z'(x,y) where Z'(x,y) is 
defined in the closure of a convex domain; it was invented for the purpose of ob- 
taining estimates for su'.h surfaces. The theorem states that any plane tangent 
to an interior point of the surface intersects the boundary curve x = x(s), 
V m y(8)» 2 "• Z'(x(s), y(s)) in at least three points; here z = x(a), y = y(«) 
represents the boundary of the domain.   (A particularly simple and elegant proof | 
of the theorem was given by J. von Neumann in [21].) 

Thus the problem of estimating the first derivatives of the function Z'(x,y) 
in (i—i.e. of estimating the slope of any plane tangent to the surface z •* Z'(x,y)— 
is reduced to that of finding an estimate of the slope of any plane passing through 
three points of the boundary curve 

x = z(«),       y = j/(«),       z = *(«). 

One may easily obtain such an estimate for the slope in terms of the maximum 
of | ^(*) | + | ^-"(s) | on r, i.e. in terms of || f ||J. The estimate depends on the 
positiveness of the curvature of F. The calculations are not at all difficult and 
instead of presenting them here we refer to Schauder [18] (pages 626-628); 
there the argument is clearly presented. 

Since || ^ |]J •» 1, it follows that the slopes of all such planes are uniformly 
bounded (the bounds depend on the shape of the domain Ct) so that the first 

"This anerta that z aasume* its maximum and minimum on the boundary of CL For a 
simple diacunion of the maximum principle for elliptic equations see [6]. 
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derivatives of Z'(x,y) are bounded.   This fact together with the result obtained 
from the maximum principle implies 

II*'Hi**. 
where k is a positive constant.   Thus Lemma 5 is proved. 

If $ is the given function on the boundary of (X we shall denote the constant 
fell* IIS fay 

lb |U IK-ir. 
Lemma 5 now implies an a priori estimate for solutions t' t Ct of the boundary 
value problem for (8.1), 

(8.8) \\z'\u<K. 

The const-ants k and K depend., of course, on the domain G, but since the 
domain is fixed throughout, their dependence on GL, and that of other constant*, 
will not be indicated. 

4. A Priori Hdlder Inequality for First Derivative*. In accordance with 
the outline of No. 1 we use (8.8) to derive new a priori estimates for solutions of 
(8.1).   Denoting the values of the constants M(K) and m(K) of (8.4), with 
K m * II * IIS * by Af and m, we shall prove 

Lemma 6:   Let z be a function in C, satisfying (8.8) 

ll« Hi £ K. 
Assume that a function ZtCt, taking on the given boundary values <t>, is a 
solution of the equation (8.2): 

A(x, y, z, z, , z,)Z,t + B(x, y, z, z,, z,)Z„ 
(8.Q) 

+ C(x, y, z, z,, z,)Z„ - 0, 

with the function 2 and its derivatives inserted in the coefficients A, B, C. 

Conclusion: \\ Z ||, < K, and there exist positive constants K and t < 1, 
which depend only on K, m, M and |j <f> \\'t , such that 

(8.10) i|Z||... <K. 

Note that the constants K, 6 are independent of the function 2. 
The lemma yields a new a priori estimate_for solutions z' t C, of (8.1) taking 

on the given boundary values — || ** ||,«i < K—if we set z(x,y) and Z(x,y) equal 
to t*. Thus we have the following a priori estimates for any solution z' t Ct of 
(8.1): 

(8.11) ll*'||. <K-*IUII.',       I!*'IU<K. 
Proof of Lemma 6: Since || 2 ||, < K, the linear equation for Z(x,y) has 

coefficients A, B,C satisfying (by condition (6) of No. 2) the inequalities 

M{t + v) > At + Bin + CV > m(f + r,\ 
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and is, therefore, elliptic.   By Lemma 5 applied to this equation we infer that 

11*11. <K, 
so that, in particular, the first derivatives of Z are bounded by K. 

Theorem V may now be applied to the function Z(x,y) as a solution of 
(8.9). The conditions of the theorem are all satisfied—the constants K, Kt , 
K, , X have the values M, K, || 4 \\i, m. We conclude that the first derivatives 
of Z(x,y) satisfy a H6lder condition in 0 with coefficient C and exponent 6 < 1 
depending only on M, K, m, || <t> \\'% . This fact, together with the inequality 
II Z ||| < K imply the conclusion of Lemma 6, with K = K + C. 

5. The Transformation Z[z) and the Proof of (8.5). Ir order to define th? 
transfo\ ination Z[z\ for 9 class of functions z u must be possible to solve the 
'leear equation (8.2) 

a{x,y)Z„ + b{x,y)Z„ + c(x,y)Z„ - 0 

—for a function Z taking on the given boundary values <t>—formed by setting 
a(x,y) = A(x,yj,z, j,), b(x,y) - B(x,y,z,z. ,z,), c(x,y) - C(x,yj,z. ,*,). According 
to Schaudar's existence theorem for linear elliptic equations, which is stated in 
No. 2, the equation for Z may be solved, provided that the coefficients a, b, e 
satisfy Holder conditions in d. From the way these coefficients are defined it 
is clear that this is the case if the first derivatives of the function z satisfy Haider 
conditions in CL 

With the aid of this remark we are now in a position to choose the appropri- 
ate set of functions z which will be mapped into itself under the transformation 
Z[z]. Lemma 5 implies that the function Z, corresponding to any function z in 
C, , satisfies the condition 

II* !!:  < K 
where K = k || 4> \\'7. This suggests choosing the set of functions z to satisfy the 
same condition \\z\\x < K. Furthermore, in order to be able to define the trans- 
formation Z\z] for this set of functions z we see from the remark above, that 
their first derivatives should satisfy Holder conditions. But what Holder 
conditions? Well, Lemma 6 informs us that if z satisfies the condition || z jji 
< K the corresponding function Z satisfies the condition (8.10), || Z ||, + l < K 
suggesting as an additional condition on our set of functions z, the condition 
|| < HIM <K. 

Let us denote by 5, •» the set of functions z satisfying the conditions 

(8.12) !!*!!,<#,      Il*||,*i<lf. 
It is clear by the definition of <S1+i and by Lemmas 5 and 6 that if the trans- 
formation Z[z] can be defined for functions z in £,•» then it maps the set Sit, 
into itself.   We have then to define Z[z] for z in S,*i . 

Denoting the values of the constants H(K) and /9(/Q of condition (a) of 
No. 2 (with K •» k || 0 ||») by H and 0, we shall define the transformation Z[z] 
with the aid of the following 
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Lemma 7: Let z be in 5,tl, and set A{x,y,z,z, ,zt) * a(x,y), B{x,y,z,zt ,*,) = 
b(x,y), C(x,y,z,z, ,*,) = c(x,y). There exists a unique solution Z{x,y) t Ct of the 
linear elliptic equation 

(8.13) a(x, y)Z.. + b(x, y)Z„ + c(x, y)Z„ - 0, 

which takes on the_given boundary values 0 e CJ*« . Furthermore, there exist 
positive constants H and 7 depending only_on K, M, m, K, 5, H, 0 and || $ ||J», 
(and hence, because of the dependence of K and 6, (see No. 4) only on K, M, m, 
H, 0 and || <. j !£•.), such that 

(8.14) ZtCtty       and       || Z ||,*t < ff. 

Proo/: Since j i z \ |, < K,z and its first derivatives p, $ satisfy the inequality 
I z I» I P I »I Q i ^ ^- From condition (a) we see that the functions A (x,y,z,p,q), 
B(x,y,z.p,q), C(x,y^,p,q) satisfy Holder conditions in all five arguments with ex- 
ponent 0 and coefficients H. Since, by assumption, the derivatives p, q of z satisfy 
a Holder inequality with exponent 6 and coefficient K, for || z ||i-i < K, it 
follows that the functions a(x,y), b(x,y), c(x,y) satisfy a Holder condition in Ct 
with exponent 0b and coefficient depending on K, K, and //. 

Note further that from (8.4) and the inequality \\z\\x < K, the inequalities 

M(t + v) > a? + &*n + cn
7 > mtf + n*)       for real *,«, 

follow, with M - M(K), m - m(K) for £ - ft || + ||2. 

Equation (8.13) is a linear elliptic equation of the type considered in 
Schauder's existence theorem. The given function <t> t Ci*m is contained in 
Ci+i for any positive y < a. The constants n and y of the theorem may there- 
fore be taken to be, respectively, 06 and any positive number less than 06 and 
not greater than a. We conclude from the existence theorem that there exists 
a unique solution Z of (8.13), taking on the given boundary values <£. Further- 
more 

ZtCt.y       and        || Z ||,4t < *, || * ||J4t 

where fe, is a constant depending on || a \\t, , || b \\f, , || c \\f, and m. Setting 
ki\\4> lit*? • H, we see that the proof of Lemma 7 is complete. 

It enables us now to define the transformation Z[z] for functions in S^., , 
and in view of Lemma 6 the transformation maps S,., into itself. Furthermore, 
according to Lemma 7, the image functions Z satisfy the inequality 

llZiU, <H. 
The last conclusion of Lemma 7 also permits the derivation of new a priori 

estimates for solutions z' c C2 of (8.1) taking on the boundary values. It was 
established that such solutions satisy (8.11) 

ll*'lli<*,     II*'!!.•*<*. 



144 LOUIS  NIRENBERO 

If, in Lemma 7, the function z is set equal to *' then, because the solution Z of 
(8.13) is unique, Z is also the function z', and hence by Lemma 7 it follows that 

z'tCt.y       and       \\z'\\7.y<H. 

We have, therefore, derived the a priori estimate (8.5) of Theorem VI. 
In the estimate just obtained for z' the Holder exponent y is less than 06. 

Using the estimate in the manner described in No. 1 we may derive an a priori 
estimate for || z' ||,*r. with y' any positive number less than 0 and <o. Consider 
equation (8.1) satisfied by z', and set A(x, y, z', z'., z't) - a(x, y), B{x, y, z', z'M, z',) 
— 6(x, y), C(x, y, z', z',, z't) = c(x, y), so that the equation takes the form 

<u'.. -f- bz'„ i &,'„ ~ 0. 

Since the second derivatives of z' are bounded hy_H, so that the first derivatives 
satisfy Lipschitz conditions with the coefficient H, it follows that the functions 
a, b, c satisfy Holder conditions with exponent 0. Applying the Schauder 
theorem of No. 2 to the equation we conclude that the second derivatives of i' 
satisfy Holder conditions with any exponent less than 0 and not greater than a. 
Thus if 0 > o we may conclude that the second derivatives of r' satisfy a Httlder 
condition with exponent a. 

In particular if the coefficients A, B, C satisfy Lipschitz conditions in all 
the arguments x, y, z, p, q, i.e., if we assume 0(K) • 1, we infer that the solution 
z'(x,y) is in C1+« and satisfies the a priori estimate 

ll*'!U<ff', 
where H' is a constant depending only on K, M, m, H and || •$ Wl*. . 

6. Proof of Theorem VI. The transformation Z[z] has been defined for 
functions z in the set JS,«« , i.e. functions z satisfying the inequalities 

11*11. <K,       \\z\u.><K, 
and maps this set into itself. Furthermore, the transformation maps the func- 
tions z into functions Z which lie in Ct*y and satisfy (8 14) 

l|Z|U<ff. 
Since the set Slt, is convex we assert that the conditions of Schauder's fixed 
point theorem of No. 1 are satisfied by the transformation in the Banach space 
C,.i . For, (/) Z[z] maps the convex set St., into itself, (2) the mapping is 
completely continuous (that it is continuous is just as easily shown)—this follows 
from the fact that the image points lie in a sphere || Z ||,+, < H in C1+T , and are 
therefore compact in C|*» . 

Therefore the transformation Z[z] has a fixed point z'{x,y). Since the 
image points of the transformation lie in Ct*y and satisfy 

112 II.*, <H 
it follows that the same is true of the fixed point z'(x,y). Therefore z'(x,y) solves 
the differential equation (8.1) and the proof of Theorem VI is complete. 
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7. Weakening of Assumptions on Boundary Values. It has already been 
pointed out (see p. 139) that we may Bhow the existence of a solution of (8.1) 
taking on given boundary values ^(s), and having continuous second derivatives 
in Ct but not necessarily in Ct, if we assume merely that the function #(«) is once 
differentiable and that the first derivative $'(*) satisfies a Lipschitz condition. 
(That is, we assume that there exists a constant L such that | $'(*i) — $'(ai) \ < 
L | «, — s, j for all «i , «» .) For this purpose we need the following theorem, 
due to Schauder ([19], Theorem 1. p. 2bo) giving a priori estimates of solutions 
of a linear elliptic equation in closed subdemains of the domain. Again we 
state this in a form best suited for application here. 

Let Z(x,y). a bounded function having continuous first and second deriva- 
tives in a bounded domain A, satisfy a linear elliptic equation in Ct 

a(x,y)Z„ + b{x,y)Z„ + c(x,y)Z„ - 0. 

v.hcre the coefficients a, b, c are in C,, 0 < u < 1. Suppose that a? + b£t) + 
&i* > m(? + ij1) for all real {, ij» where m is some positive constant. For every 
positive number y < \i and every closed subdomain (B of Q, 

Z(x,y) t C,*T       in (B, 

and 

|| Z ||,V < *, max \Z\. 

Here ij j|?*, denotes the norm of the function considered as being defined only 
in the closed domain (B; kt U e constant depending only on y, n, || a ||,, || b ||,, 
|| e ||#, m ar.d the distance d from (B to the boundary of 1. 

That Z is in CV, follows from Theorem I, of (5] (page 208). 
Suppose now that we wish to find a solution of (8.1) assuming the given 

boundary values 4>{s). Set max ||| 0 ||f, L\ = «, where L is the Lipschitz con- 
stant of 0'. Approximate $(«), in the sense of the norm |l ||,', by a sequence of 
functions <*>,(«) having continuous derivatives up to the third order and such 
that jj 0. ||a < 2K, n = 1, 2, 3, • • • . We know that for each of these functions 
we may floive equation (8.1) for a function z„(x,y) which equals $«(a) on the 
boundary—this follows from Theorem VI. By the a priori bounds (8.11) 
established for solutions of J[8.1) we know that || z. ||, < k || 0. ||, — 2&« and 
that || 2. ||i«.|» < K' where K and i' are constants, 0 < 6' < I, which depend 
on K and are independent of n. It follows, as in the proof of Lemma 7, that the 
functions A(x, y, r., p., qm), B(x, y, z.,pu, qn), C(x, y, zm,p., qn) as functions of 
x and y satisfy a uniform Holder condition (independent of n) in Ct. We may 
therefore apply the just stated theorem by Schauder to the equation satisfied by 
z. , and conclude that there exists a positive constant y < 1, such that for any 
closed subdomain (B of a the inequality 

II *. II?--, < kt max | z. |, n = 1, 2, • • • 
a 
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holds, where fci is a constant independent of n.   Since || zH ||, < 2kx we have 

I!*. II?., <2kikK. 

This last inequality implies that the functions 2. and their first and second 
derivatives are uniformly bounded and equicontinuous (since the second deriva- 
tives satisfy a uniform Holder condition) in every closed subdomain of G. It 
follows, in the usual way, that we may select a subsequence of the z, which will 
converge (together with first and second derivatives) to a function z(x,y) (and 
its first and second derivatives) in G. In every closed subdomain of G the 
convergence will be uniform and the second derivatives of z(~,y) satisfy a Holder 
condition. 

Clearly z(x,y) is a solution of the differential equation (8.1). Since it 
satisfies the inequality 

II ^11, <2kK, 

it is continuous in the closure of G and because || 4> — $. ||( —» 0, assumes the 
value 4>(s) on the boundary. 

8. Solution of Boundary Value Problem Using Theorem IV. Our proof of 
Theorem VI made use of Theorem V only in the proof of Lemma 6 showing t.hat 
the first derivatives of the solution Z of (8.9) satisfy a Holder condition in Ct. 
It is of interest that one may demonstrate the existence of a solution of (8.1), 
which takes on the boundary values $, using—instead of Theorem V—Theorem 
IV. The solution so obtained is continuous in Ct and has continuous second 
derivatives in G, but not necessarily in G. 

In order to carry out this existence proof one constructs again an appropriate 
class of functions z for which the transformation Z[z] may be defined, and which 
is mapped into itself under this transformation—thus enabling the use of the 
Schauder fixed point theorem. Our class of functions 2 in the proof already 
given (defined in No. 5 as £,•«) was determined by means of Lemmas 5 and 6 
which made use of Theorem V. Suppose now, in the discussion of Lemma 6, 
we use Theorem IV instead of V, what is the corresponding class of functions 2 
so obtained? It is the nature of this class of functions, and of the corresponding 
Banach space, that is the interesting feature here. 

To determine this class consider again the differential equation (8.9) for 
Z (of Lemma 6) with z satisfying condition (8.8). Going through the proof of 
Lemma 6, but applying Theorem IV instead of Theorem V, we conclude that 
the first derivatives of Z satisfy a Hdlder inequality in any closed subdomain of 
G (not necessarily in all of G). 

Thus if we denote by G. the domain consisting of those points of G whose 
distance frum the boundary of G is greater than 1/n, n = 1,2, • • • , we may 
conclude, in particular, that there exist positive constants i. < 1 and Km , de- 
pending only on m, K, M, n and || <t> ||,' , such that the inequalities 

(8.15; \\Z\\U,.<KU n-1,2, .-., 
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hold.   Here the left Bide represents the norm of Z considered as a function de- 
fined in the domain 0,. 

Inequalities (8.15) replace the inequality (8.10) which was obtained with 
the aid of Theorem V. Lemma 5 and inequalities (8.15) now suggest (as in No. 
5) that the appropriate set of functions for which the transformation Z[z] is to 
be defined is the set of functions, which we denote by 5, satisfying the conditions 

II* II, <K,       ||*!|f:,.<J?.( n= 1,2, ••• . 

By Lemma 5 and the inequalities (8.15) it is clear that the transformation Z[z], 
if it can be defined on S, maps S into itself. 

In order lo complete the existence proof, using Sch&uder's fixed point 
theorem we must show the following: 

(a) The transformation Z[z] may be defined for functions z in S.   That is, for 
any function z of S there *>xists a unique solution Z of the equation 

(8.16)        A(x,yjfM ,z,)Z„ + B(x,ytjt t,)Z„ + C(x,y,zj, j.)Z„ - 0, 

having continuous second derivatives in Ct, and taking on the given boundary 
values <f>. 
(b) The set 5 is a convex set lying in a Branach space C. 
(c) The transformation Z[z) is completely continuous in C.   (It must also be 
shown that Z[z] is continuous in C; this is easily done, and we omit it here.) 

Assuming (a), we sho»v firut (b) and (c). 

Proof of (b): The definition of the appropriate Banach space C is suggested 
by inequalities (8.15). Consider any function z{x,y) having continuous first 
derivatives in a which satisfy H6lder inequalities in G. with exponent 6U for all 
n =• 1, 2, • • • .    Define a new norm for z{x,y) by 

||*|| -l.u.b.£||«||f;,.. 

The Banach space C is now defined as the set of functions z having finite norm 

IM|. 
The set S may then be characterized as the set of functions z satisfying the 

inequalities 

l!« II. <K,       ||t || £1, 
and is clearly a convex set in C. 

Proof of (c): In order to demonstrate the complete continuity of the 
transformation Z[z] in C we establish estimates for the solution Z of (8.16) with 
z in S. This is done with the aid of Schauder's theorem on a priori estimates of 
solutions of elliptic equations quoted in No. 7. 

Let Z(x,y) be the solution of (8.16) taking on the given boundary values 
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4>, with z in S—we are assuming that (a) is verified. Consider the equation in 
the domain 0t„<, (for any n). In that domain the first derivatives of z are 
bounded by K and satisfy a Holder condition with exponent £*•, and coefficient 
/f.«i (since z is in S). It follows, as in the proof of Lemma 7, that the coefficients 
a(x,y) — A{x,y,z,z, ,zt), • • • of the equation (8.16), regarded as known functions 
of x and y, satisfy in a,*, a _Holder condition with exponent and coefficient 
depending only on 0, J.*, , K, Kn*t and H; furthermore, they satisfy the follow- 
ing inequality 

M(? + O > a? + bin + cr,* > m(? + *')       for all real f,ij. 

(The definitions of the constants M and m are given in No. 4 while the definitions 
of 0 and H prece«k the statement of Lemma 7 in No. 5.) We may thsrefoiv 
apply Schauder's theorem of No. 7 to the equation (8.16) in the domain <!»•, 
and conclude that in the closure of (i, , which is a closed subdomain of ft.., , the 
solution Z has continuous second derivatives satisfying Holder conditions with 
exponent yn and that 

i! Z ii?:T. < *. max I Z | < k„ max | * | 

where yn and k% depend only on the constants 0, <„», , /f, /C.+, , H, M, m and n. 
The complete continuity of the transformation Z[z] now follows from the 

fact that the set of functions Z satisfying the inequalities 

II 2 II?;,. < *.max|*| n=l,2, ••• 
is compact in C. 

Thus, in order to solve the boundary value problem, by proving the exist- 
ence of a fixed point of the transformation Z[z], we have only to verify (a). Note 
that the solution z(x,y), so obtained a3 a fixed point, satisfies the inequalities 

(8.17) ll*||?*\. <*.max|o>|. 
Proof of (a): Consider equation (8.16) with z some function in S. It has 

the form 

(8 18) a(x,y)Z., + b{x,y)Zlt + c{x,y)Z„ = 0, 

and is to be solved for the function Z taking on the given boundary values 4>. 
As remarked above in the proof of (b) the coefficients a, b, c satisfy In each domain 
&, a HSlder condition1*—with exponent and coefficient which we now denote 
by or. and K. . The existence of a solution Z will be proved by approximating 
the coefficients o, b, c by functions o, , 6,, c. , n • 1, 2, • • • , which agree with 
a. b. c in CL , and which satisfy Holder conditions in the whole domain &. The 
analogous linear differential equations with coefficients a. , bn , c. will admit 
solutions taking on the given boundary values; a subsequence of these solutions 
will converge to the solution of (8.16). 

"The existence proof given here applies to all equations of the form (8.18) (and to a 
wider class) with coefficients satisfying Holder conditions in every closed subdomain of the full 
domain. 
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The approximation of the coefficients a, b, c by functions a, ,bm, c. having 
the required properties is particularly simple in our case: For n sufficiently 
large, say n > some number N, the boundry of a. is a convex curve having 
positive curvature. To_every point (x,y) in Q, outside of O. there is a unique 
nearest point (x',y') in a.. We define the approximating functions a. , 6. , c. 
for n > N by 

{a(x,y), b(x,y), c(x,y) for (x,y) in a. , 

a(x'y), b(x',y'), c(x',y')       for (x,y) not in Q. , 

n « Ar -I- 1, • • • • The functions a., 6., c. satisfy in a a H6lder condition (which 
varies with nh Therefore, by Schauder's existence theorem for linear elliptic 
equations we may solve the equation 

a.Z«*. + bmZ„, + c.Z„, =» 0 
for a function Zm(x,y) which takes on the given boundary values $ (n — 1,2, • • •)• 

Consider now the functions Z,», ,£,•», • • • in the domain (i,,, for some 
fixedy. In a,., the coefficients a, , b< , c, for all t > j + 1, are equal to a, 6, c 
and hence satisfy a Hdlder condition with exponent a,*, and coefficients AT,-, . 
Using now Schauder's theorem on a priori estimates in closed subdomains, we 
conclude that there exist positive constants k, , and -y, < 1, such that 

|| Z, 11,^,, < k< max | Zt | < k, max \ 4> |; 
r 

for, the closure of a, is a closed bubdomain of a,*, . Thus the functions £,•, , 
Zt.3 , • • • and their first and second derivatives are uniformly bounded and 
equicontinuous in Qt , and we may therefore select a subsequence which con- 
verges (together with first and second derivatives) to a function Z{x,y) (and 
its derivatives) in Ot,. By letting; progress through N + 1, N + 2, • • • we may, 
by the usual diagonalization process, find a subsequence of the Zn which wil) 
converge (together with first and second derivatives) to a function Z(x,y) (and 
its corresponding derivatives) in all of GL Clearly Z(x,y) is the required solution. 
That Z(x,y) assumes the given boundary values and is continuous in the closure 
of O follows from the fact that Z(x,y) satisfies the inequality—as do the functions 
z.(*,v)- 

II * lit £* 11+IIS 
which is a consequence of Lemma 5.   Thus (a) is verified, and the solution of the 
boundary value problem for equation (8.1) is complete. 

It follows from (8.17) that the second derivatives of the solution z(x,y) of 
(8.1) so obtained satisfy Holder conditions in every closed subdomain of Q. 

9. Estimates for Higher Derivatives of Solutions 
of Nonlinear Elliptic Equations 

1.    It is easily seen that with the aid of the theory of linear elliptic equa- 
tions developed in [19] one may obtain estimates for derivatives of all orders of a 
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solution of the nonlinear elliptic equation (1.1), once bounds for the solutions and 
its derivatives up to third order are known. In this section we show how to 
obtain estimates for derivatives of order greater than two of a solution of (1.1), 
knowing bounds for its first and second derivatives. The estimates we obtain 
are of two kinds: estimates of derivatives in closed subdomains, and, under 
additional assumptions concerning smoothness of the boundary and of the 
boundary \ allies, estimates for derivatives in the whole domain. 

The estimates of the first kind follow immediately from Theorem I and from 
a priori estimates for solutions of linear elliptic equations, as given by Schauder 
in [19]. Those of the second kind are derived using a sharp form of Theorem I 
(which is proved below) and, again, Schauder's estimates in [19] for linear 
elliptic equations. 

Estimates of the second kind for the general nonlinear elliptic equation 
were first given by P. Bernstein [2], and were re-established by Schauder using 
Bernstein's method of 'auxiliary functions ([18] section 6). Schauder's esti- 
mates are not quite as strong as those given here. He requires, for instance, 
more differentiability of the differential equations (see also footnote 15 on page 
154). One main feature of our procedure for obtaining the estimates is that 
given Theorem I (or its sharp form) we need only use statements concerning 
linear elliptic equations. Schauder's use of the auxiliary functions (which is 
somewhat difficult to follow) involves more essentially the nonlinear character 
of the equation. 

The estimates of the first kind for the general nonlinear elliptic equation, 
which we present here arc new. H. Lewy [11] derived such estimates for non- 
linear elliptic equations of the Monge-Ampere type which are analytic. In 
addition, however, he succeeded in obtaining a priori estimates for derivatives 
of second order of solutions of a dass of such equations ([11], II). 

In connection with the problem of finding a priori estimates, depending on 
the boundary values, of derivatives of solutions of general nonlinear elliptic 
equations, mention should be made of the work of J. Leray [7], [8], 

In [7] he obtained a priori bounds for derivatives of second order of solutions 
of a class of nonlinear elliptic equations (the class includes quasilinear equations) 
in terms of bounds for derivatives of first order. In [8] he discussed, still further, 
equations for which a priori bounds for derivatives of first order of solutions 
may be derived, and described classes of equations for which such bounds do not 
exist. In particular he furnished criteria for the existence or non-existence of a 
priori bounds for derivatives (of first and second order) of solutions of equations 
of Monge-Ampere type. 

2.   Estimate* of the first kind.   We shall consider a solution z(x,y) of an 
elliptic equation 

(9.1) F(x,yf,p,q,r,t,t) = 0 

in a bounded domain D, and assume that the conditions of Theorem I are 
satisfied, i.e. 

i 
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(i) The first partial derivatives of F (with the values of z(~,y) and its 
derivatives inserted into the arguments) are bounded in absolute vaiue by a 
constant K. 

(ii)   z(x,y) has continuous first and second derivatives bounded by Kx . 
(in)    For any real ($,n) the inequality 

F,e + F.h + F,r? > Uf + ifi 

holds for all (z,y) in D, with X a positive constant. 
Furthermore, assume 

(iv) F has continuous derivatives up to order m with respect to all vari- 
ables and its derivatives of w.-th order satisfy Header conditions with reapect 
to all variables. Let the constant K (of (i)) be a bound for the derivatives of F 
up to order m and for the H6lder coefficient of the derivatives of m-th order— 
when the values of z(x,y) and its derivatives are inserted into the arguments. 
Let /3 denote the exponent of this Holder condition. 

It follows from Theorem III that the solution z(x,y) possesses partial 
derivatives up to order m + 2 in D and that its derivatives of order m + 2 
satisfy a Holder condition in any closed subdomain of D. 

The estimates of the first kind for the solution z{x,y) are contained in 

Theorem VII: In any closed connected subdomain (B of D the derivatives 
of z{x,y) up to order m + 2 are bounded in absolute value by a constant which, 
together with the constants of the Holder inequality in ffi for the derivatives of 
order m + 2, depends only on the constants K, K, , X, /3, the distance d from (B 
to the boundary of 3D, and the diameter D of 3D14. 

Proof: To prove this theorem we differentiate equation (9.1) and apply 
known theorems on linear equations. We restrict ourselves to the proof for the 
case m = 1 where estimates for third derivatives must be found. Estimates for 
derivatives of higher order are obtained by further differentiation of the equa- 
tion and application of the same argument. 

Differentiate equation (9.1) with respect to z and consider the resulting 
equation as a linear equation in p «• zM with known coefficients 

(9.2) F,p„ + F.p„ + F,p„ + F,p, + F,p, + F.p + F. - 0. 

We claim that the arguments x, y, z • • • , z„ occurring in the coefficients, con- 
sidered as functions of (x,y), satisfy in any connected closed subdomain (&' of 3D 
a Holder inequality with constants depending only on the constants of (i)-(iii), 
the distance a from <$>' lo the boundary of 3D, and D. For the arguments z„ , 
2,„ , z„ the H6lder inequality is a consequence of Theorem I. For the arguments 
z, , z, it is a consequence of condition (ii). Finally, it is easily seen, using the 
connectivity of (B', that the argument z(x,y) satisfies a Holder inequality in 
<&' for which the constants depend only on Kx (of (ii)), d' and D. 

"If a bound for the function z in known the assumptions of the boundednees of the domain 
3D and the connectedness of <B are unnecessary. 
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It follows now, from the Holder continuity (in all arguments) of the first 
derivatives of F, that the coefficients in equation (9.2), considered as known 
functions of (x,y) satisfy a Holder condition in <$>' with constants depending only 
on the constants of (i)(iv), on d', and D. 

Let S be a given connected closed subdomain of 3D. Introduce another 
closed subdomain (B' of 3D consisting of the connected component containing <B 
of the set of all points whose distance from the boundary of SO is not less than 
d/2: clearly d' «- d/2 and <B is a closed subdomain of (B'. To equation (9.2), 
considered in <£', we apply a theorem on a priori bounds for solutions of linear 
elliptic equations due to Schauder (Theorem I, p. 265 in [19])—of which the 
theorem stated on page 145 is a special case—and conclude that in (B the second 
derivatives of p, i.e. z,„ , ttn and z,„ are bounded by a constant which, together 
with the constants of the Holder inequalities for these second derivatives in (B, 
depends only on the constants of (i)-(iv), on d and on D. 

Similarly, differentiating (9.1) with respect to y we obtain analogous esti- 
mates for z„, , thus proving Theorem VII. 

3. Estimates of the second kind. A sharp form of Theorem I. Estimates of 
the second kind for solutions of (9.1) will be derived for solutions z(x,y) satisfying 
conditions (i)-(iv) above and the additional conditions: 
(v) (a) The domain 3D is of type Lm.t (see §2, 1), and the function z{xjtf) and 

its derivatives up to order m + 2 are continuous in the closure 3D of 3D. 
In addition the boundary values of z(x,y), regarded as functions of arc 
length, have continuous derivatives up to order m + 2 which are 
bounded by a constant Kt • 

(b) Furthermore, the derivative of order m + 2 of the boundary values 
satisfies a Holder condition with coefficient K, and exponent y. 

These estimate*: for the solution z(x,y) are contained in 

Theorem VIII: _The derivative* of z(x,y) up to orderm + 2 are bounded 
in absolute value in 3D, and those of order m + 2 satisfy in 3D a Holder condition, 
the constants of which, together with the bound for all the derivatives, depend 
only on the constants of (i)-(v), and on the domain i>. 

In order to prove Theorem VIII we shall make use of a strong form of 
Theorem I: 

Theorem IX: Let z(x,y) be a solution of (9.1) and assume that conditions 
(i)-(iv) and (va) are satisfied for m = 1. Then the derivatives of second order 
satisfy in 3D a Holder condition with constants depending only on the constants 
of (i)-(iii), (va), and on the domain 3D. 

Proof: The proof being similar to that of Theorem V which was carried 
out in detail, is presented merely in outline. It would, of course, be very con- 
venient if we could apply Theorem V directly to equation (9.2), and derive a 
Holder inequality in 3D for the first derivatives of p, i.e. for r and a. Indeed 
p(x,y) and equation (9.2) satisfy all the conditions of Theorem V—except that, 
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on the boundary we are given estimates for the third derivative of the boundary 
values of t, not for the second derivative of the boundary values of p. 

The procedure to be followed is, as in §6, to establish estimates of the form 
(6.4) for the functions r, s and t, that is, to find positive constants d, M, a < 1, 
depending only on the constants of (i)-(iii), (va), and on the domain D, such 
that the inequality 

(9.3) ff o-(r] + r] + s] + a\ + £ + 0 dx dy < M 

holds, where Ct represents the intersection of 3D with any circle having centre in 
3D and radius d, and p is the distance of point of integration from the centre. 
The desired H6lder inequality for r, $ and t then follows from Lemma 1'. 

The estimates of the form (9.3) will be derived first for the functions r and 
«, which satisfy an inequality 

(9.4) r'. + rl + a] + «.' < fc(r* - rA) + *. , 

where k and kt are non-negative constants depending only on the constants of 
(i)-(iii). This inequality is a consequence of the Remark at the beginning of 
§4 applied to (9.2). The corresponding estimate, of the form (9.3) for I follows 
from the inequality 

(9.5) eM + £ < K(r] + r*, + si + 9*.+ 1), 

where AT is a constant depending on the constants of (i)-(iii). Inequality (9.5) 
is derived immediately from the quasilinear equation obtained by differentiating 
equation (9.1) with respect to y. 

Applying Lemma 3 to (9.4) it is seen that the functions r and « satisfy 
estimates of the form (9.3) for sufficiently small circles C4 lying entirely inside 
3D (and bounded away from the boundary of 3D). We shall have to derive rich 
estimates for the C< which may approach, and eveu intersect, the boundary of 3D. 

To this end, as in §6, 3, we introduce local trsusform&tions of variables 
(from (z,y) to ({,n), of the type (6.5)), in the neighborhood of a boundary curve, 
mapping the boundary curve, at least locally, into a straight segment (on 17 — 
constant). The function z(x,y) as a function z'(t,n) of the new variables satisfies 
a transformed differential equation, which we may refer to as (9.1)'. On differ- 
entiating (9.1)' with respect to ( (i.e. in a direction parallel to the straight 
boundary uegmeut) we find, a» hi $6, 3, that the second derivatives z'u •• r' , 
z„ - a' satisfy an inequality similar to (9.4), which we may refer to as (9.4)', 
with constants k' and k[ depending only on the constants of (i)-(iii) and the 
domain 3D (here we use the fact that 3D is of type L,). In addition, since a bound 
for the third derivative of the bcindary values of 2 is known (from (va)) we 
note that on the straight segment of the transformed boundary 

\ri\<Ki,- 
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where the constant K'3 depends only on the constants of (i)-(iii), (va), and 
the domain D, In virtue of (9.4)' and this last inequality we may apply Lemma 
3' and conclude that estimates of the form (9.3) hold for the functions r' and s' 
in circles C't which may intersect the straight boundary segment. Differen- 
tiating (9.1)' with respect to i\ we may derive the analogue (9.5)' of (9.5), and 
hence conclude that t' also satisfies estimates of the form (9.3) for the circles C'd. 

Reintroducing the variables x and y we may duplicate the rest of the argu- 
ment given in §6, 3 and obtain the numbers d, M, a < 1 for which (9.3) holds, 
and thus complete the proof of Theorem IX. 

Remark: It is possible, following the remark at the end of §7, to establish 
the holder conditions for r. « and t, in 3D, in terms of the constants of (i)-(iii), a 
constant K3 , and the domain D; here A", is a bound on the integrals of the 
squares of the third derivatives of the boundary values of z (with respect to arc 
length) along the boundary curves. 

4. Proof of Theorem VIII. As in the proof of Theorem VII we describe 
here only the proof for the case m = 1, where we must find estimates for third 
derivatives of *.'* Again we differentiate equation (9.1) and apply Theorem IX 
and theorems on linear equations. The estimates for derivatives of higher 
order (m > 1) may then be obtained by further differentiation and repetition 
of the same argument. 

The desired estimates for closed subdomains are given by Theorem VII; 
in order to derive the estimates for points near the boundary we introduce, as 
in No. 3, local transformations (from (x,y) to (£,ij), of the type (6.5)), in the 
neighborhood of a boundary curve, mapping the boundary curve, at least 
locally, into a straight segment r (on IJ = constant). The transformed function 
z'(£,n) satisfies the transformed equation, which we again refer to as (9.1)', and 
which, on differentiation with respect to £ yields an equation (9.2)', analogous 
to (9.2), which we may consider as a 'linear' equation with known coefficients 
in the function z\ » p'. This equation holds in a domain r' having r as part 
of its boundary. 

As in the proof of Theorem VII we may conclude, using Theorem IX instead 
of Theorem I, that the coefficients of equation (9.2)' satisfy, as functions of { 
and tj in this domain r', a Holder condition with constants depending on the 
constants of (i)-(iv) and on 3D. In addition the solution p' of the linear' equa- 
tion (9.2)' satisfies on F the inequality 

i Pit \ < K't, 

in virtue of (va), and p't( satisfies on r a H6lder condition (in virtue of (vb)), 
with constants which, together with K't , depend on the constants of (i)-(v) 
and on 3D. 

ttAs Theorem VII asserts, the estimates so obtained depend on estimates for the deriva- 
tives of F cAfirrt order only. The corresponding estimates obtained by Bernstein and Sctiauder 
(see No. 1) depend also on estimates for derivatives of F of second order. 
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In his study of linear elliptic equations with Holder continuous coefficients 
Schauder showed how to obtain a priori estimates for the second derivatives 
(and their Holder continuity) of a solution of the equation in a subdomain a 
(of the original domain r" where the differential equation holds) which may abut 
a boundary segment r of T', provided that (a) tt remains bounded away from 
any other boundary points of T', (6) on r estimates for the derivatives of the 
boundary values up to second order and their Holder continuity is known. 
(See [19], Chapter 3, in particular Theorem 2.) This is exactly our situation, 
and using Schauder's results, we may obtain estimates for the second derivatives 
of p', i.e. for «;{i , Z|lf . «{,, , and their Holder continuity in a subdomain of r' 
lying near I'. From the equation obtained by differentiating (9.1)' with iespect 
to ij, we see that we can express z',„ in terms of these other third derivatives of 
z'.   Hence similar estimates hold for z'„, . 

On re-introducing the original coordinates (x,y), and noting that this proce- 
dure may be carried out in a neighborhood of every boundary point of 3D, we 
obtain estimates for the third derivatives of z and their Holder continuity in a 
domain consisting of points lying in some neighborhood of the boundary of 3D. 
(The fact that SD is of type L, is used here. The details of this procedure are 
related to those carriedj)ut in §6, 3 and are not presented.) 

The remainder of 3D is a closed subdomain of 3D for which such estimates 
have been established in Theorem VII. Combining these estimates by a simple 
argument we may derive the required estimates in the whole domain 3D, and thus 
complete the proof of Theorem VIII. 
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